

International Journal of Farming and Allied Sciences Available online at www.ijfas.com ©2016 IJFAS Journal-2016-5-2/126-167/ 29 February, 2016 ISSN 2322-4134 ©2016 IJFAS

Selenium enrichments of Cauliflower (*Brassica* oleracea L. var. Botrytis) and Broccoli (*Brassica* oleracea L. var. Italica) grown under driphydroponic system hybrid 704

Caser G. Abdel and H. O. Ali Agriculture College, Dohuk University, Dohuck, Iraq

Corresponding author: Caser G. Abdel

ABSTRACT: Difano and Organza f1 Cauliflower cultivars and Calbrese Broccoli cultivars were enriched with Selenium, as they were irrigated with nutrient solutions containing 0, 0.5, 1 and 1.5 mg.l⁻¹ Selenium by drip-hydroponic system. Our intention was to produce cauliflower and broccoli foods containing sufficient Selenium to cure some diseases including cancer. The obtained results revealed that all applied rates of Selenium were within the valid rates, where the highest accumulated Selenium on dry basis was (5.06 μ g.g⁻¹) which goes to 0.5 μ g.g⁻¹ in fresh edible tissues. However, increases applied Se rate tended to reduce to accumulated Se in curds and adversely affected growth. Fulvic-Humic acid reduced accumulated Se in curd and improved IAA, GA₃, ABA, CK homeostasis, N, K, Cu, Zn, Fe and Ca. The best capability of Se accumulation was Difino F1 followed by Calbrese then Organza F. The lowest accumulated se (0.53 μ g.g⁻¹) in curd tissue found in Organza treated 1ml.l⁻¹ Fulvic-Humic irrigated with 1.5 mg.l⁻¹ Se contained water, Calbrese (1.76 μ g.g⁻¹) treated 2ml.l⁻¹ Fulvic-Humic irrigated with 1.5 mg.l⁻¹ Se contained water and Difino (3.06 μ g.g⁻¹) treated 2ml.l⁻¹ Fulvic-Humic irrigated with 1.5 mg.l⁻¹ Se contained water.

Keywords: Broccoli, Cauliflower, Selenium (Se), GA3, IAA, ABA, CK, N, K, Ca, Cu, Zn, Fe, Mineral partitioning, Drip irrigation, Hydroponic

Introduction

Brassica is one of the most important plant groups, containing species widely used in our daily life. *Brassica rapa;* (n=10), *B. nigra;* (n=8); and *B. oleracea;* (n=9) are the three basic groups with three amphidiploid species. *B. napus* (n=19), *B. juncea* (n=18) and *B. carinata* (n=17) derived from interspecific hybridization between pairs of these diploid species. Hybrids are *B. rapa* × *B. oleracea, B. rapa* × *B. nigra* and *B. nigra* × *B. oleracea,* respectively (UN, 1935). Based on chloroplast DNA (Warwick and Black, 1991), mitochondrial DNA (Palmer and Herbon, 1988), and nuclear DNA variation (Song *et al.*, 1990) the phylogenetic relationships in *Brassica* and its related genera have been proposed. Brassica species divided into two evolutionary pathways: the (nigra) lineage and the (rapa/oleracea) lineage. Raphanus thought to be closely related to the *Brassica* species. However, its relation to either lineage remains unsolved. Based on chloroplast and mitochondrial DNA restriction site variation (Warwick and Black, 1991;

Palmer and Herbon, 1988), *Raphanus* proposed to be more closely related to the (rapa/oleracea.) lineage, but nuclear RFLPs and other RAPD data have suggested that Raphanus is more closely related to the (.nigra.) lineage (Song *et al.*, 1990; Thormann *et al.*, 1994).

Broccoli (*Brassica oleracea* L. var Italica) is an important vegetable with floral heads composed of hundreds of immature florets arranged in whorls on a fleshy stem. Each floret consists of an immature flower enclosed within chlorophyll-containing sepals. The chlorophyll degradation within these sepals that results in the rapid yellowing of the heads during storage (Tian *et al.*, 1994). There are three main types of broccoli: sprouting, Calabrese, and romanesco. Calabrese is most familiar because of its large heading portion and thick stalks. Calabrese is the most common type of broccoli grown and eaten with tight, dome shaped, green-beaded heads. Sprouting broccoli has smaller flowering heads and many thinner stalks. The romanesco type reaches maturity in the fall and is distinguished by its yellowish-green multiple heads (Renaud 2010).

The humic substance is assumed to be formed by microbial activities and chemical processes which can involve both degradation and polymerization (Hedges 1988; Stevensen 1994; McKnight and Aiken, 1998). The biopolymerdegradation model proposes that organic macromolecules such as carbohydrates and proteins partially degraded and biopolymers such as lignin transformed into humic substances. The biotic-condensation model proposes that spontaneous abiotically heteropoly condensation reactions among small reactive intermediates for example amino acids, phenols and sugars released during enzymatic breakdown of bio macromolecules can produce extremely complex assemblages of molecules that exhibit a brown colour (Calace *et al.*, 2005). These macromolecules are interesting because of their structural features, which includes binding sites with different complexing strength, able to form inert and labile complexes with metals (Yamamoto and Ishiwatary, 1992).

The preferential sorption of aromatic humic moieties to aluminum (AI) and iron (Fe) oxides were detected (McKnight et al., 1992; Gu et al., 1995). Ligand exchange-surface complexation was proposed as the dominant interaction mechanism for sorption of humic substances on Fe oxide (Gu et al., 1994), Yoon et al. (2005) found that weak outersphere type complexes would play an important role during the interaction of humic substances with boehmite (y-AIO(OH)). Other factors, such as the stereo chemical arrangement of the functional groups on humic substances may also lead to preferential sorption of certain humic fractions (Gu et al., 1994). Strong interaction between Elliot soil humic acid (ESHA) and hydrous AI oxide (HAO) led to ESHA-promoted dissolution of HAO and surface charge reversal. The ESHA-HAO sorption-desorption isotherms were successfully described using a modified Langmuir model that accounted for the heterogeneity of HAO surface and ESHA. Ligand exchange proposed as the major interaction mechanism and the edge AI atoms on HAO surface considered as the sorption sites for ESHA macromolecules. ESHA was coated onto HAO to achieve two different organic content (foc) levels of 0.81 and 1.52% (Gu and Karthikeyan, 2007). Sorption results compared for the binary ESHA-tetracycline and HAO-tetracycline systems, and the ternary ESHA-HAO tetracycline system. The coating of ESHA on HAO significantly suppressed tetracycline sorption levels, which was attributable to altered HAO surface charge characteristics and/or direct competition between ESHA and tetracycline for potential sorption sites. Higher Organic content (foc) level, besides increasing the extent of sorption suppression, also resulted in greater ionic strength dependence and increased nonlinearity of sorption behavior.

The average Se concentration is much higher in sedimentary rocks, especially shales and coal, than in igneous rocks (Kruskopf, 1982). This explained, as consequence of volatile Se transfer to the atmosphere and hydrosphere during volcanic processes. It shown that sulphuric acid-rich polluted rain was an important source of Se. It had been known for a long time that the oceans via evaporation, atmospheric transport and deposition from rainwater or snow are a major source of iodine in soils, with the supply rate being much higher in humid coastal areas than inland (Goldschmidt, 1954). It demonstrated, however, that supply from the sea via rain and snow was as important for Se as it earlier had been shown to be for iodine, and the Se concentration was much higher near the coast than inland (Allen and Steinnes, 1980). The mechanism for transfer of Se from the sea to the atmosphere not known at that time. However, later it shown that it takes place by evaporation of dimethylselenide and other volatile Se compounds (Cooke and Bruland, 1987), similarly as iodine is transported from seawater into the atmosphere in the form of methyl iodide (Chaeides and Davis, 1980).

Plants accumulate varying amounts of Se; some plants accumulate Se in direct relationship to the amount available from the soil, whereas others (Se accumulators) may accumulate Se in concentrations orders of magnitude above that in the majority of species. As much as 80% of the total Se in some accumulator plants is present as methylselenocysteine SeMCYS (Whanger, 2004). The Se content and the chemical form of Se within plants altered by manipulation of plant genetics or by agricultural production conditions. Se-methionine in cereals is the major form of Se intake by humans, and its concentration increases with increasing soil Se (Schrauzer, 2000). Plants convert Se mainly into selenomethionine (Se-methionine) and incorporate it into protein in place of methionine because the

genetic code and tRNA do not discriminate between the two. Se-methionine is the major selenocompound in cereal grains, grassland legumes, and soybeans, while Se methylselenocysteine (SeMCYS) is the major selenocompound in Se-enriched plants such as garlic, onions, broccoli, sprouts, and wild leeks. The seleno compounds identified in plants have been summarized by Whanger (Whanger, 1989; Whanger, 2002), to be selenate, selenite, selenocysteine, Se-methionine, selenohomocysteine, SeMCYS, Se-methionine selenoxide, gamma-glutamyl-Se-methyl cysteine, selenocysteineselenic acid, Se-proponylselenocysteine selenoxide, Se-methyl-Se-met, selenocystathione, dimethyl diselenide, selenosinigrin, selenopeptide and selenowax.

Selenium (Se) is an essential micronutrient for animals and humans, although it was known only for its toxicity (Draize and Beath, 1935; Schwarz and Foltz, 1957). The reduction of selenate and selenite to selenide and subsequent coupling with O-acetylserine result in the formation of selenocysteine and selenomethionine. Both of these selenoamino acids nonspecifically incorporated into proteins in place of Cys and Methionine, which contributes to Selenium toxicity in Se non-accumulators (Brown and Shrift, 1982). It is a component of many enzymes and proteins in mammals (Kryukov et al., 2003). It found that a cDNA encoding selenocysteine Se-methyltransferase, the key enzyme responsible for SeMSC formation, cloned from broccoli using a homocysteine S-methyltransferase gene probe from Arabidopsis (Arabidopsis thaliana). This clone, designated as BoSMT, functionally expressed in Escherichia coli, and its identity confirmed by its substrate specificity in the methylation of selenocysteine. The BoSMT gene represents a single copy sequence in the broccoli genome. Examination of BoSMT gene expression and SeMSC accumulation in response to selenate, selenite, and sulfate treatments showed that the BoSMT transcript and SeMSC synthesis were significantly upregulated in plants exposed to selenate but were low in plants supplied with selenite. Simultaneous treatment of selenate with selenite significantly reduced SeMSC production. In addition, high levels of sulfate suppressed selenate uptake, resulting in a dramatic reduction of BoSMT mRNA level and SeMSC accumulation (Lyi et al., 2005). SeMSC accumulation closely correlated to BoSMT gene expression, and total Se status in tissues, besides providing important information for maximizing the SeMSC production in this beneficial vegetable plant.

Broccoli has the ability to accumulate high level of Se-methylselenocysteine (SeMCys) and selenomethionine (SeMet) when grown on seleniferous soil (Cai et al., 1995). These selenoamino acids shown to be potent chemo protective agents against cancer (Ip et al., 2000; Whanger, 2002). Other plant foods, such as garlic and Brazil nuts, enriched with Se and marketed as dietary Se supplements (Dumont et al., 2006). SeMSC synthesized from selenocysteine and S-methyl methionine by the enzyme, selenocysteine Se-methyltransferase (SMT). A gene encoding SMT from A. bisulcatus (AbSMT) was successfully cloned (Neuhierl et al., 1999). This SMT enzyme belongs to a class of methyltransferases involved in metabolism of S-methyl methionine. It shares significant primary sequence homology with homocysteine S-methyltransferases (HMT) from Arabidopsis (Arabidopsis thaliana). Ranocha et al., (2000). Although both SMT and HMT catalyze methyl transfer using S-methyl methionine as the methyl donor, they exhibit remarkable Se-containing (for SMT) and S-containing (for HMT) substrate preference as a methyl acceptor in vitro (Neuhierl and Bock, 1996; Ranocha et al., 2000). SeMSC is one of the most effective anticarcinogenic Se compounds (Ip et al., 1991; Ganther, 1999; Ip et al., 2000; Whanger, 2002). It is the major form of selenoamino acids found in Se-enriched broccoli and broccoli sprouts (Cai et al., 1995; Finley et al., 2001; Sugihara et al., 2004). Thus, identification of a broccoli cDNA encoding SMT, the key enzyme involved in the formation of SeMSC, permits a comprehensive study of gene expression in relation to SeMSC production in plants. SeMSC constitutes the major peak of selenoamino acids in Se-enriched broccoli (Cai et al., 1995) and is the primary form of Se found in Se-enriched broccoli sprouts (Finley et al., 2001; Sugihara et al., 2004). Studies provided convincing evidence for the role of high Se broccoli in reducing cancer risk (Finley et al., 2000; Finley and Davis, 2001; Davis et al., 2002). Thus, development of approaches to increase the accumulation of SeMSC in broccoli may greatly enhance its health-promoting properties (Finley, 2003). The objective of this study as to enrich broccoli and two cauliflower cultivars with four Selenium rates namely 0, 0.5, 1, 1.5 mg.l⁻¹ ameliorating the insertion by 0, 1, and 2mg.l⁻¹ fulvic – Humic acid, using drip-hydroponic techniques.

Materials and methods

A. Experimental location

This investigation was carried out during the period July 27th, 2012-Feberuary 2nd, 2013 at the field of Horticulture Department, Agriculture College, Dohuk University, Dohuk which is located at (36°51"38')North Latitude and (42°52"02')East longitude, and with altitude of 473 m.

B. Cultivar sources

Calbrese broccoli (*Brassica oleracea* var. Italica) and two cauliflower (*Brassica oleracea* var. botrytis) cultivars namely Difano and Organzaf1seed pockets purchased from Agricultural Bureau in Dohuk. The investigated cultivars were Calbrese produced by HORTUS in 2012- 2013, expire date 2015. Difano cauliflower cultivars produced by

HORTUS Seed Company on 2011-2012, expire date in 2014. Organza f1 was produced by CLAUSE vegetable Seed Company on 2012, expire date in 2014.

C. Experimental design

Split plot within Factorial Complete Randomized Block Design (Split- F-CRBD) selected for this experiment. The main plot (A) represented by Selenium rates including 0 mg.l-1 (a1), 0.5 mg.l-1(a2), 1 mg.l-1(a3) and 1.5 mg.l-1(a4). Whereas the sub main plot (B) was represented by Fulvic-Humic acid rates including 0 ml.l-1(b1), 1 ml.l-1(b2), and 2 ml.l-1(b3). The sub-sub main plots (C) introduced by Calbrese broccoli cultivar (c1), Difano cauliflower cultivar (c2) and Organza f1 cauliflower cultivar (c3). Therefore, the trail was contained 36 treatments; a treatment replicated 3 times. Each replicate represented by a row of 1 x 3m with plant intra space of 25 cm.

D. Experimental constructions

Four main plots were prepared according to experimental design. Land area of 3.5 x 36 m-2of each main plot was dig by digger machine to a depth of 0.75m. Basins covered with double layers of clear polyethylene to avoid outcome and in come moisture seepage to the growing media. Then plots filled with pure building sands (approach 90 m3). Finally, sand leveled and dissected to 36 x4 rows.

Four water reservoirs each of 2m³ positioned at 0.75 m above the experiment level. Each reservoir was separately equipped with dripper tube connected to tank valve fixed on the pot rows, where two emitters left to irrigate each plant.

Selenite dissolved in cultural solutions to match the desired rates (Table, 1). Four tanks was filled by the nutrient solutions, then a reservoir was connected through valves to the drip irrigation polyvinyl chloride (PVC) tubes to conduct solutions to individual plant where two emitters were allocated for each plants. During the growing season each main plots consumed 10 m3 of nutrient solution. Subsequently, the water consumptive use was 92.593 mm besides rainfall. It is worthy to mention that accumulated rainwater pumped out the experiment.

E.	Table (1): Nutritional solution included Macro and trace elements, besides well water content of mineral. (*), (**)									
		Macronutrients	Trace elements	Initial conter	nt of well water					
	Chemicals components of reservoir solutions	Nitrogen 20 Phosphorous 20 Potassium 20 Sulfur 0.4	Iron20 Zinc 14 Cupper 16 Manganese12 Boron 12 Molybdenum 11	N = 0.11 Zn=0.001 Ca=54.72 Cu=1.257 K= ND	Besides solution Se(1.5)mg.I-1, Se(1)mg.I-1, Se(0.5)mg.I-1 , and Se(0)mg.I-1 were added , respectively in Reservoirs 1, 2, 3, and 4.					
	(*): Selenite SeO3.H2o given rates added to individual reservoir. (**) Chemicals added five times, first time (500g/each reservoir), three times (1000g/each reservoir) and last time (1500g /each reservoir).									

Cultural practices

Seeds of broccoli and cauliflower cultivars were sown in plastic trays previously filled with peat moss on July 27th, 2012. Seedlings were transplanted in the prepared fields on August 8th, 2012. Drip irrigation applied immediately after transplanting. On September1st plant were sprayed with the proposed rates of fulvic-humic acids and repeated once more on January 5th 2013. Plants sprayed by Trigard at rate 1ml.l⁻¹ to control leaf cutter on September10th 2012. Finally, plants were harvested on 2nd, February 2013. Samples kept in polyethylene bags for laboratory measurements. Meteorological data (Table, 2) obtained from the meteorological station, Agriculture College, Dohuk University, Sumel.

Table (2). The average of maximum and minimum temperature, relative humidity and rainfall during study season (2012-2013)*									
2012-2013									
Month Temperature(C) Rainfall(mm) Relative humic									
Max. Min.									
November	20.95	9.77	3.01	67.72					
December	13.39	4.85	6.18	77.49					
January	11.45	2.25	14.43	77.88					
February	14.86	4.92	6.28	77.9					
March 18.41 6.36 6.36 66.8									
* Data collected from (Agro – metrological station at college the nearest station to the research									
location).									

F. Measurements

i. Vegetative measurements

Leaf fresh weight, stem fresh weight, root fresh weight, curd fresh weight were measured by metler balance of two decimal, whereas leaf number was counted. Plant height measured by ruler. Curd, leaf, and root samples of each replicate were weight and the oven-dried at 55° C for 72 hrs. Dry samples reweighed to calculate the dry matter content of leaves and roots. Finally, Exceeding percentage = (high value - low value)/ low value100x.

ii. Stomata components dimensions

Upper and lower leaf surfaces smeared by clear nail varnished and left to dry for 15 mints then peeled and mounted over slides and it covered with cover slide. Graded eye lens of 7 x magnitude and objective lens of 40 x magnitude were calibrated by micro metric slides of 1/100mm, where calibration reveals that each grade out of total 100 grades 2.22 micron. The dimensions of stomata length, stomata aperture length, stomata width, and stomata aperture width and stomata population of both upper and lower leaf surfaces measured for each replicate.

iii. Digestion and determination of curd, leaf, and root minerals

0.5 g powder dry weight sample was digested by adding 10ml concentrated sulfuric acid (H₂SO₄) then 10 ml of H₂O₂ was added then the samples were heated until being clear and thereafter transferred to 50ml volumetric flask the final sample was brought to 50ml with adding of distilled water. Iron, copper, and calcium determined by Atomic Absorption Spectrophotometer (GBC 932 AA, Avanta Ver 1.32). Sodium and potassium determined by Flame Photometer (Jenewa type). While, Total Nitrogen percentage determined by Kjeldahl Apparatus according to (A.O.A.C, 1980).

iv. Selenium determination

Selenium was determined in accordance to West and Ramakrishna (1968). The following steps adopted:

Reagents

a. Conditioner solution was prepared by dissolve 6.25 g of Na2EDTA-2H₂O, 0.10 g of FeCl₃, and 13 mL of triethanolamine in reagent water and dilute to 250 ml in a volumetric flask.

b. Alkaline sodium sulfide solution prepared by 50 mL aqueous solution that contains 2.4 g of Na2S·9H2O, 2.4 g of Na2SO3, and 4.0 g of solid NaOH solution in a volumetric flask. Dissolve each reagent first rather than adding all solid material to the flask at once.

c. Methylene blue (FW = 373.90) solution. Prepare a 0.07 mM aqueous solution in a 50 mL volumetric flask by dilution of the 0.7 mM stock solution (0.026 g in 100 mL).

d. Standard Se solutions (CAUTION: Se is a toxic element). From the 1000 mg.l⁻¹ stock solution provided by the instructor, prepare a 2 mg.l⁻¹ solution in a 100 mL volumetric flask. This will require a two-step dilution procedure. Dilute with distilled water. Prepare four calibration standards that span the 0.25-1.5 ppm range. Use 25 mL volumetric flasks for these standards.

Procedure

a. The UV-Vis measurements were 513 and 420 nM type (Jenewa Type). Use distilled water as the spectroscopic blank. Determine λ max of methylene blue; obtain separate spectra for the other components of the reaction also. Plots of A vs. λ to obtain peak table.

b. Caution: Wear gloves during the handling of these solutions. Into the (clean and dry) cuvette, (i). Add (with a micropipette) 400 µl of alkaline sulfide solution, (ii). Add 800 µl of conditioner solution, and (iii). 800µL of formaldehyde. Then, add 800 µl of sample (standard or unknown) to the cuvette. (iv). add 800 µl of the 0.07 mM methylene blue solution to the cuvette and start the timer. Cap the cuvette, invert it several times, and place it in the sample compartment of the spectrometer.

v. Hormonal extractions and determinations

IAA, ABA, GA₃, and CK were determined according to (Ergun *et al.*, 2002).

vi. Chlorophyll

Chlorophyll percentage out of the gross pigments of folded and unfolded leaves measured by Chlorophyll Meter (model Spad 502).

Table (3). Experimental detected traits and their symbol and units										
Stomata population at upper leaf	St. Pop	Leaf Number	LNo							
surface no/mm ²	stoma.mm ⁻²									
Stomata length at upper leaf surface	St.lup µm	Leaf fresh weight g	L fwt g							
Micron										
Stomata aperture length at upper leaf	St.alup µm	Leaf dry weight g	Leaf dwt.							
surface Micron			g							
Stomata width at upper leaf surface	St.wup µm	Plant high cm	Pht cm							
Micron										
Stomata aperture width at upper leaf	St.awup	root fresh weight g	Rfw g							
surface Micron										
Stomata population at lower leaf	St. Pop	root dry weight g	Rdw g							
surface no/mm ²	stoma.mm ⁻²									
Stomata length at lower leaf surface	St.llo µm	Stem fresh weight g	Sfw g							
Micron										
Stomata aperture length at lower leaf	St.allo µm	Stem dry weight g	Sdw g							
surface Micron										
Stomata width at lower leaf surface	St.wlo µm	Curd fresh weight g	Cfw g							
Micron										
Stomata aperture width at lower leaf	St.awlo µm	Curd dry weight g	Cdw g							
surface Micron										
Selenium mg.l ⁻¹ or µg.g ⁻¹	Se µg.g ⁻¹	indole-3-acetic acid	IAA µg.g⁻							
		µg.g ⁻¹	1							
Iron mg.l ⁻¹ or µg.g ⁻¹	Fe µg.g⁻¹	Gibberellic acid	GA3							
		µg.g ⁻¹	µg.g⁻¹							
Potassium mg.I ⁻¹ or µg.g ⁻¹	K µg.g⁻¹	Abscisic acid µg.g ⁻¹	ABA							
			µg.g⁻¹							
Calcium mg.l ⁻¹ or µg.g ⁻¹	Ca µg.g⁻¹	Zeatin µg.g-1	Z µg.g⁻¹							
Zinc mg.l ⁻¹ or µg.g ⁻¹	Zn µg.g ⁻¹	Nitrogen %	N %							

Results and Discussion A. The influence of Selenium rates

i. Influence of Se on vegetative growth

The obtained results (Table, 4) showed that selenium application resulted in plant growth promotions accept in term of curd fresh weight, which revealed gradual reductions as selenium rates were increased. However, these reductions were not significant. The highest leaf fresh weight (177.51g) confined to 1.5 mg.l⁻¹ rate. It highly surpassed check (38.4%), 0.5 mg.l⁻¹ (19.1%) and 1 mg.l⁻¹ (37.79%) in term of leaf fresh weight. Moreover, this treatment manifested the highest leaf dry weight (41.91 g), which significantly exceeded untreated leaf dry weight (40.9%), leaf number per plant (15.4%) and root fresh weight (34.8%). It is worthy to manifest that this treatment was superior over 0.5 mg.l⁻¹ in term of root dry weight (23.8%). The worst treatment was the untreated, since it gave the lowest values in terms of leaf fresh weigh (128.23g), leaf dry weight (29.74g), leaf number (21.93), root fresh weight (31.8g) and chlorophyll content (57.8% chlorophyll out of other leaf pigments). Other treatments engage the gap between the best and worst treatments. It can be inferred that Se promote plant growth through the involvements of Se-mediated changes in the antioxidant capacity of plants in growth promotion by Se, the activity of antioxidant enzymes including ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and glutathione reductase (GR) and the concentration of H₂O₂ and glutathione were confirmed (Haji Boland and Amjad, 2007). The growth improvement that comes from fulvic-humic acids might be due its effects on cellular membranes. Where, increase the permeability of plant membranes due to humate application resulted in improve growth of various groups

of beneficial microorganisms, accelerate cell division, increased root growth and all plant organs for a number of horticultural crops and turf grass, as well as, the growth of some trees, (Russo and Berlyn, 1990; Poincelot, 1993).

Tabl	Table (4). The influence of selenium rates (mg.l ⁻¹) on growth of broccoli and two cauliflower cultivars ^{(*), (*),}											
Se	lfwt	ldwt	lno	sfwt	sdwt	rfwt	rdwt	cfwt	cdwt	plh	chol	
0	128.23	29.744	21.926	81.759	18.644	31.804	14.085	148.1	31.19	57.796	63.99	
	b	b	b	а	а	b	ab	3 a	а	С	3 a	
0.	149.03	35.611	26.148	78.881	17.415	38.559	13.437	121.0	24.49	66.819	64.54	
5	b	ab	а	а	ab	а	b	1 a	b	а	а	
1	128.82	37.419	25.481	71.856	15.104	38.026	16.359	127.8	28.28	60.959	63.43	
	b	а	а	а	bc	ab	ab	8 a	ab	bc	3 a	
1.	177.51	41.907	25.296	79.233	13.378	42.881	16.63	129.8	23.8b	64.181	63.07	
5	а	а	а	а	С	а	а	9 a		ab	а	
(*):lf sdfw	(*):lfwt=leaf fresh weght (g); ldwt=leaf dry weight (g); lno=leaf number per plant; sfwt stem fresh weight (g); sdfwt=stem dry weight (g); rfwt=root fresh weight (g); rdwt=root dry weight (g); cfwt=curd fresh weight (g); cdwt=curd											
dry weight (g); plh=plant height (cm); chol= Chlorophyll percentage out of other pigments.												
(**):	Figures of u	nshared c	haracters	are signifi	cant at 0.0	5 level, Du	ncan test.					

ii. The influence of Selenium rates on leaf hormonal homeostasis

Selenium application resulted in plant growth promotions (Table, 5). The highest bounded (6000 µg.g⁻¹) and total (1011µg.g⁻¹) IAA confined to 1mg.l⁻¹ Se. This treatment profoundly overwhelmed 0.5mg.l⁻¹ Se (273.4 and 173.7%, respectively). Furthermore, this treatment exhibited apparent prevalence on untreated (222.5 and 171.5%, respectively). The highest free Abscisic acid (ABA) accumulation (9373 µg.g⁻¹) was coincided with 1 mg.l⁻¹ Se rate. It significantly exceeded 1.5 mg.l⁻¹ Se rate by (125.9%). The highest free Zeatin content of leaves (3660.7 µg.g⁻¹) confined to 0.5 mgl⁻¹, which substantially bypassed untreated (26.88%). Se acts as antioxidants. Subsequently it participate in oxidants homeostasis for the benefits of growth through hormonal regulations. Selenium (Se) is an essential micronutrient necessary for antioxidation and hormone balance in human and animal cells (Ellis and Salt 2003). However, according to current knowledge, higher plants do not require Se and it is toxic at high concentrations (Marschner, 1995).

Table	Table (5). Hormone accumulation in leaves as influenced by Se rates (μg.g ⁻¹)											
Se	IAA	IAA	IAA	GA ₃	GA ₃	GA ₃	ABAFr	ABA	ABA	Zeatin	Zeatin	Zeatin
	Free	Bound	Total	Free	Bound	Total	ee	Bound	Total	Free	Bound	Total
0	1866	1860	3726	35504	21694	57038	5340	27671	3295.7	2885.1	2624.3	5509.4
	а	b	b	а	а	а	ab	а	а	ab	а	ab
0.5	2101	1609	3696	24656	20342	44997	5952	4472	1042.4	3660.7	2767	6427.7
	а	b	b	а	а	а	ab	а	а	а	а	ab
1	4116	6000 a	10116	35275	1921	54485	9373	3803	13176	23437	2566.8	4910.5
	а		а	а	а	а	а	а	а	b	а	b
1.5	3767	4083a	7849	29178	28761	57939	4148	4234	8381	2900.5a	2192.6	5093.1
	а	b	ab	а	а	а	b	а	а	b	а	ab
(*): Fi	igures of ur	nshared ch	aracters are	e significant	at 0.05 leve	l, Duncan	test.					

iii. The influence of selenium rates on stomata behaviour

Untreated plants (Table, 6 and Figure, 3) revealed the lengthiest stomata aperture (5.32 micron) at upper leaf surface. It substantially exceeded 0.5 mg.l⁻¹ treatment (19.53%). Whereas, the widest stomata aperture width (3.79 micron) at the upper leaf surface was confined to 1 mg.l⁻¹. It profoundly overwhelmed 0.5 mg.l⁻¹ (42.32%). Untreated plants showed the highest stomata width (7.82 micron) at the lower leaf surface; it substantially overwhelmed 0.5 mg.l⁻¹ treatment by (17.3%). The lowest stomata population (1180.79 st.mm⁻²) at the lower leaf surface observed in 0.5 mg.l⁻¹ treatment. 1.5 mg.l⁻¹ Se treatment exceeded 0.5 mg.l⁻¹ by (9.6%) in term of stomata population. These results suggested that Se rates in particular 1.5 mg.l⁻¹ Se treatment highly improved leaf growth, which reflected on stomata populations, as this treatment gave the lowest population. The lowest stomata population usually accompanied with leaves of maximum growth (Abdel, 2009). There are some indications that Se can exert beneficial effects on plants at low concentrations (Hartikainen *et al.* 2000; Simojoki *et al.* 2003).

Table ((6): The ir	nfluence o	of Se rate	s on stoma	ata behaviour	of broccoli a	and cauliflov	ver cultiva	r leaves (*	[•]), (**)
	Stomata	a dimensi	ons of up	per leaf su	rface	Stomata c	limensions of	of upper le	af surface	;
Sea	Stl	stw	stal	stawl	St Popul.	Stl	Stw	Stal	stawl	St Popul.
0	10.1a	7.82a	5.32a	3.36ab	1232.34a	10.65a	7.9a	5.68a	3.33a	1228.52a b
0.5	9.51a	6.67b	4.44b	3.06b	1254.3a	10.19a	7.82a	5.18a	3.42a	1180.79b
1	10.16 a	7.41a b	5.36a	3.79a	1272.43a	9.99a	7.24a	5.39a	3.58a	1250.48a b
1.5	10.12 a	7.24a b	5.36a	3.78a	1237.11a	10.26a	7.90a	5.84a	3.83a	1294.39a

(*) . popup = stomata population at upper leaf surface; poplo = stomata population at lower leaf surface; stlup = stomata length at upper leaf surface; stalup = stomata aperture length at upper leaf surface; stwup= stomata width at upper leaf surface; stlup = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata width at lower leaf surface; stallo = stomata

(**): Figures of unshared characteristics are significant at 0.05 level Duncan test

Se rates	Fu-H	Cultivars	Upper surface	Lower surface
Se(0)	0		00	
	1	Calbrese	50	
	2		63/	

0		19/0	
1	Difano	69	
2		000	
0	Organza F1	0 00	
1			

iv. The influence of Se on mineral accumulations in Curd, leaf and root

The highest Nitrogen contents of curd, leaf and root dry matters were 2.77, 3.37 and 3.05 %), respectively in control plants. Furthermore, the highest N contents of leaf was confined to 0 mg.1-1 Se, which was highly exceeded 0.5 and 1 mg.l⁻¹ Se by 30.1 and 31.64%. The highest Potassium contents of curd, leaf and root dry matters were 33.43. 31.39, and 30.76 μg.g⁻¹, respectively in plants irrigated by 0.5 mg.l⁻¹ Se. It profoundly exceeded 1.5 in curd (31.1%), in leaf (16.9%) and in root 12.79%). Moreover, it substantially overwhelmed 1 mg.l⁻¹ Se in leaf contents of potassium (19.7%). 1mg.I⁻¹ Se treatment revealed the highest Zn accumulation in curds (199.97 µg.g⁻¹) as, compared to other treatments. It highly exceeded 1.5 mg.l⁻¹ Se by (19.9%). Plants treated with 1mg.l⁻¹ Se exhibited the highest Zn content in laves (200.7 µg.g⁻¹). The highest Zn content (197.7µg.g⁻¹) of roots found in root of 1.5 mg.l⁻¹ Se treated plants. It substantially overwhelmed 0.5 and 1 mg.l⁻¹ Se by 50.9 and 59%, respectively. Moreover, this treatment possesses the highest root content of calcium (2683.4 µg.g⁻¹). The highest Calcium content (3300.2 µg.g⁻¹) of leaves was confined to untreated plants, which was highly bypassed, 0.5 mg.l⁻¹ Se (30.95%), 1 mg.l⁻¹ Se (41.5%) and 1.5 mg.l⁻¹ (43.4%). Moreover, 1.5 mg.l⁻¹ Se gave the highest calcium content in root dry mattes (2683.4 μ g.g⁻¹), which was confined to 1.5 mg.l⁻¹ Se. It highly exceeded untreated (47.3%), 0.5 mg.l⁻¹ Se (64%), 1 mg.l⁻¹ Se (58.4%). The highest curd Selenium content (4.59 µg.g⁻¹) accompanied with 0.5 mg.l⁻¹Se treatments. It significantly exceeded 0, 1 and 1.5 mg.l⁻¹ Se by 245, 22.7 and 33.8%, respectively. 0.5 mg.l⁻¹ Se revealed the highest Se content of leaves (5.06 µg.g⁻¹). Significant differences not detected in leaf contents of Se (Table, 7). Sulfur concentration of leaves increased in response to Se treatment at both sulfur deficient and sufficient plants, but the opposite observed on the Se concentration in response to sulfur treatment. Selenium concentration was higher in sulfur deficient plants and particularly two varieties of Brassica accumulated large amounts of Se, e.g. 9 mg/g dry weight for kohlrabi. Reduction of Se uptake in sulfur sufficient plants could be the result of a reduced activity of selenate ion in the presence of sulfate and/or competition between sulfate and selenate for carriers (White et al. 2004) in favor of sulfate. A high Se accumulation capacity of some Brassica species found applications in phytoextraction of Se-contaminated soils (Simon et al. 2006).

Table (7). Mineral accumulation in curd, leaf and root as influenced by selenium rates (mg.l ⁻¹) (*)									
M/Se	(0)se	(0.5)se	(1)se	(1.5)se					
Zn/curd	186.87ab	196.22a	199.97a	166.84b					
Zn/leaf	197.53a	200.72a	193.57a	193.93a					
Zn/root	184.96a	124.46b	124.32b	197.71a					
Fe/curd	574.3a	400.6a	352.8a	532.5a					
Fe/leaf	314.17a	243.91a	209.71a	239.97a					
Fe/root	265.45a	196.53a	212.49a	271.84a					
Ca/curd	4407.5a	3601.9a	3343.9a	4164.1a					
Ca/leaf	3300.2a	2520ab	2332.8b	2301.1b					
Ca/root	1821.4b	1635.9b	1693b	2683.4a					
Se/curd	ND	4.59a	3.74ab	3.43b					
Se/leaf	ND	5.06a	5.02a	4.62a					
Se/root	ND	5.80a	4.64a	4.65a					
N/curd	2.77a	2.71a	2.56a	2.48a					
N/leaf	3.37a	2.59b	2.56b	2.93ab					
N/root	3.05a	2.65a	3.01a	2.59a					
k/curd	32.67a	33.43a	29.86ab	25.50b					
k/leaf	27.44ab	31.39a	26.23b	26.85b					
k/root	30.21ab	30.76a	28.93ab	27.27b					
(*): Figures of	unshared characters are	significant at 0.05 level.	Duncan test.						

B. Plant responses to Fulvic-Humic acids

i. Growth responses to Fulvic-Humic acids

The results of fulvic-humic acids application rates (Table, 8) confirmed that the highest curd fresh weight (145.9g) and leaf number per plant (25.67) dedicated to untreated check, which apparently exceeded 2g.1-1 treatment by 22.9 and 8.8%, respectively. 1g.l-1 fulvic-humic was significantly exceeded 2g.l-1 treatment in term of root fresh weight and root dry weight 24.3 and 25.2%, respectively. In addition to that, 1g.I⁻¹ treatment showed superiority over control in root fresh weight (24.3%). These results exhibited the potent influence of fulvic-humic acids on broccoli and cauliflower plants. Growth improvements might be attributed to the influence of fulvic-humic acids on microorganism. Since, it was found in the previous decade has witnessed an increasing number of publications documenting the presence of antibiotics, potential contaminants, in the environment. For example, members of the tetracycline family of compounds, among the most widely used antibiotics, have been detected in soils (Hamscher et al., 2002), surface waters (Lindsey et al., 2001; Kolpin et al., 2002) and even ground water (Lindsey et al., 2001; Karthikeyan and Meyer, 2006). It, therefore, appears that the presence of humic substances, in both dissolved and mineral-bound forms, is likely to increase the environmental mobility of tetracycline compounds (Gu et al., 2007). Tetracyclines known to persist and accumulate in soils after repeated usage of liquid manure as fertilizers (Hamscher et al., 2002). However, there is limited information on the retention mechanisms for tetracyclines in subsurface environments. Results from binary humic-antibiotic and mineral-antibiotic systems may not be simply combined or extrapolated to understand the reactivity of antibiotics in a complex humic-mineral-antibiotic ternary system.

Table (Table (8). The influence of fulvic-Humic acids rates (g.l ⁻¹) on plant growth (^{*)} . (^{**)} .											
F-H	lfwt	ldwt	Ino	sfwt	sdwt	rfwt	rdwt	cfwt	cdwt	plh	Chol	
0	9.81ab	7.2832ab	5.1a	3.3a	1256.44a	10.3261a	7.6536a	5.5241a	3.7033a	1229.24ab	3954a	
1	10.43a	7.6536a	5.22a	3.7651a	1227.81a	10.2768a	7.8387a	5.8328a	3.6725a	1203.47b	3788a	
2	9.66b	6.9129b	4.91a	3.3330a	1262.89a	10.2150a	7.6536a	5.2155a	3.2404a	1282.93a	2402a	
(*): lfwt	(*): Ifwt=leaf fresh weght (g); Idwt=leaf dry weight (g); Ino=leaf number per plant; sfwt stem fresh weight (g); sdfwt=stem dry weight (g); rfwt=root											
fresh v	weight (g);	rdwt=root dry	/ weight (g); cfwt=cur	d fresh weigh	nt (g); cdwt=c	urd dry weig	pht (g); plh=	plant height	(cm); chol= C	hlorophyll	

percentage out of other pigments. (**): Figures of unshared characters are significant at 0.05 level, Duncan test.

ii. Leaf hormonal homeostasis as influenced by Fulvic-Humic acids

The obtained results (table, 9) revealed that the highest bounded GA_3 (27973 µg.g⁻¹) was accompanied to untreated check, which was highly exceeded 2g.l⁻¹ fulvic-humic treatment by (51.9%). The highest free Zeatin (3000.4 µg.g⁻¹) was confined to 2g.l⁻¹ fulvic-humic treatment, which insignificantly differed from untreated treatment (2.11%). It seems that hormonal homeostasis slightly affected by fulvic-humic acids, where significant differences not detected except with Zeatin.

Table	Table (9). Leaf hormonal homeostasis (µg.g ⁻¹) as influenced by fulvic-humic rates (g.l ⁻¹) ^{(*),}											
Ful	IAA	IAA	IAA	GA ₃	GA ₃	GA ₃	ABA	ABA	ABA	Zeatin	Zeatin	Zeatin
	Free	Bound	Total	Free	Bound	Total	Free	Bound	Total	Free	Bound	Total
0	2797a	3954 a	675a	34336a	27973a	62309a	8312a	21816a	30129a	2938.4a	1297.1b	4987a
1	2245a	3788 a	6033a	29748a	21126ab	50874a	4579a	3904a	8483a	2.9037a	1922.3a	5915a
2	3847a	2445 a	6258a	29202a	18405b	47662a	5718a	4374a	10092a	3000.4a	1626ab	5553a
(*): Fi	aures of u	nshared c	haracters	are significa	nt at 0.05 lev	el. Duncan t	est.					

iii. Stomata dimensions as influenced by Fulvic-Humic acids

Stomata dimension results (Table, 10 and Figure, 4) manifested that plants treated with 1 mg.l⁻¹ fulvic-humic acids possesses the highest upper surface stomata length (10.43 micron) and upper stomata width (7.65 micron). It highly exceeded these of 2mg.l⁻¹ by 7.99% and 10.7%, respectively. The lowest stomata population at the lower leaf surface was found in 1 mg.l⁻¹ fulvic-humic acids (1203.47 st.mm⁻²), which showed substantial reduction as compared 2 mg.l⁻¹ fulvic-humic acids (6.6%). Significant differences not detected between other treatments. Stomata behavior was highly influenced by the application of fulvic-humic owing to its capability to make moisture and many minerals available to plants. Subsequently leaf performance well established. Bama *et al.* (2003) showed that, with increasing dose of humic acid, the available nutrients, organic carbon, and cation exchange capacity is increased. A linear trend in the release of N, P and K was observed for the application of humic acid. The release of N was significant up to 20 kg of HA ha⁻¹, whereas for P and K it extended up to 40 kg ha⁻¹. The N and P were released for a longer period of 60 days, while K release attained a plateau on45 DAI. At the end of incubation period, there was a steep and significant increase of organic carbon and CEC up to 40 kg HA ha⁻¹. With increasing dose of humic acid from 10 to 40 kg ha⁻¹, the soil fertility parameters also enhanced. Nitrogen is one of the most essential nutrients for plants and is involved in the building of the fundamental bricks of life: nucleotides, amino acids, and proteins. Legumes plant

Intl J Farm & Alli Sci. Vol., 5 (2): 126-167, 2016

species are able to use atmospheric nitrogen due to their capacity of a symbiotic relationship with specific microorganisms. The other species find their resources in the soil where nitrogen is present in different forms. For example, the soil solution may contain different organic N forms such as soluble proteins or amino acids derived from proteolytic processes. In particular, ecosystems, some plant species are able to use these organic N forms, as described in a recent review. In temperate climatic conditions, inorganic N forms are predominant and fertilizers often supplied as nitrate, ammonium, or urea.

Se	Fu	Cultivar	Upper surface	Lower surface
Se(0.5)	0			
	1	Calbres e		
	2			
	0	Difano	06	

Figure (4): Stomata behaviour of lower and upper leaf surfaces of cauliflower and broccoli

Table (1	Table (10). Stomata population and dimensions of upper and lower leaf surfaces as influenced by fulvic-Humic acids rates (g.I-1) (⁽⁾ ; (⁽⁺⁾ ; (⁺⁺))										
Fulv.	Stomata d	imensions o	f upper leaf sur	face		Stomata dimensions of upper leaf surface					
	stl	stw	stal	stawl	St Popul.	stl	stw	stal	stawl	St Popul.	
0	0.910b	7 29ab	5 00210	2 20210	1256 140	10.22610	7 65260	E E2410	2 70220	1229.24a	
	9.81ab 7.28ab 5.0921a 3.3021a 1256.44a 10.3261a 7.6536a 5.5241a 3.7033a b										
1	10.43a	7.65a	5.2155a	3.7651a	1227.81a	10.2768a	7.8387a	5.8328a	3.6725a	1203.47b	
2	9.66b	6.9b	4.9069a	3.3330a	1262.89a	10.2150a	7.6536a	5.2155a	3.2404a	1282.93a	
(*). popu	(*). popup = stomata population at upper leaf surface; poplo = stomata population at lower leaf surface; stlup = stomata length at upper leaf										
surface; stalup = stomata aperture length at upper leaf surface; stwup= stomata width at upper leaf surface; stwup= stomata width at upper											
leaf surface; stilo= stomata length at lower leaf surface; stallo =stomata aperture length at lower leaf surface; stwlo= stomata width at lower											
leaf surf	ace: stawlo-	- stomata wi	dth at lower lea	fsurface							

(**): Figures of unshared characters are significant at 0.05 level, Duncan test.

iv. Mineral accumulation in curd, leaf, and root as influenced by Fulvic-Humic acids

The highest Nitrogen contents of curd, leaf and root dry matters were 2.77, 3.09 and 3.04%), respectively in control plants. The highest Potassium contents of curd, leaf and root dry matters were 32.43, 28.64, and 30.10 µg.g⁻¹), respectively in control plants. The highest Zinc contents of curd, leaf and root dry matters were 199.1, 199.98, and 169.95 µg.g⁻¹), respectively in control plants, Control, and 2ml⁻¹ f-h. Check plant substantially bypassed 2ml.l⁻¹ f-h in Zn content of curd (10.5%). The highest Zinc contents of curd, leaf and root dry matters were 199.1, 199.98, and 169.95 µg.g⁻¹), respectively in control plants, control, and 2 ml⁻¹ f-h. The highest Iron contents of curd, leaf and root dry matters were 513.3, 270.07 and 243.37 µg.g⁻¹), respectively in 1 ml⁻¹ f-h sprayed plants, 1 ml⁻¹ f-h sprayed plants and in control and 0 ml⁻¹ f-h. The highest Calcium contents of curd, leaf and root dry matters were 4200, 2666.4 and 2023.7 µg.g⁻¹), respectively in 2 ml⁻¹ f-h sprayed plants, 0 ml⁻¹ f-h and 0 ml⁻¹ f-h. The highest Selenium contents of curd, leaf and root dry matters were 3.18, 4.07, and 3.92 µg.g⁻¹), respectively in control plants, 1ml.l⁻¹f-h, and control (Table, 11). These results suggested that Selenium accumulation was highest in leaves, roots, where the lowest observed in curd. Sulfur concentration of leaves increased in response to Se treatment at both sulfur deficient and sufficient plants, but the opposite observed on the Se concentration in response to sulfur treatment. Selenium concentration was higher in sulfur deficient plants and particularly two varieties of Brassica accumulated large amounts of Se, e.g. 9 mg/g dry weight for kohlrabi. Reduction of Se uptake in sulfur sufficient plants could be the result of a reduced activity of selenite ion in the presence of sulfate and/or competition between sulfate and selenate for carriers (White et al., 2004) in favor of sulfate. A high Se accumulation capacity of some Brassica species, for instance in cabbage 22.2µg.g⁻¹, and in Kohlarabi 22.122.2µg.g⁻¹ were found in phytoextraction of Se-contaminated soils (Simon et al., 2006). The obtained results manifested paramount effects on mineral accumulation where the highest nitrogen, zinc, potassium, and Calcium substantially accumulated in leaves. However, the highest Iron confined to curd found, owing to its mobility as its deficiency appears on newly formed leaves. These results might be due to humic-fulvic potency in cation exchange capacity. The profound increase in CEC due to HA in the present study highlighted the beneficial effect of HA on CEC. There was a steady increase in CEC with increased levels of HA. However, significant increase was up to 60 kg of HA ha⁻¹. The HA was found to contain functional groups, that would form the source of negative charge and they could have contributed towards the CEC of the soil (Bama et al., 2003). This charge might be due in part to the dissociation of hydrogen ions from carboxyl groups and probably in part to their dissociation of hydrogen ions from carboxyl groups and also probably in part to their dissociation from phenolic hydroxyls and particularly from groups of the hydroxyls. Similar reports reported earlier by Lax (1991), who observed that the incorporation of soil organic matter induced the exchange capacity due to the various functional groups namely carboxyl, phenolic etc. present in the humic substances of soil organic substances.

Intl J Farm & Alli Sci. Vol., 5 (2): 126-167, 2016

Table (11). Mineral partitioning (µg.g ⁻¹ ; %) in curd, root and leaves of broccoli and two cauliflower cultivars ^(*) . ^(*) .								
	(0)Fu-H	(1)Fu-H	(2)Fu-H					
Zn/curd	199.10a	183.30ab	180.11b					
Zn/leaf	199.98a	193.68a	195.66a					
Zn/root	153.81a	149.83a	169.950a					
Fe/curd	477.40a	513.30a	404.50a					
Fe/leaf	242.81a	270.07a	242.94a					
Fe/root	243.37a	243.37a	229.56a					
Ca/curd	4200a	3466.70a	3871.30a					
Ca/leaf	2666.40a	2618.80a	2555.40a					
Ca/root	2023.70a	1849.40a	2002.10a					
N/curd	2.77a	2.65a	2.46a					
N/leaf	3.09a	2.80a	2.71a					
N/root	3.04a	2.69a	2.74a					
K/curd	30.88a	32.43a	27.79a					
K/leaf	28.02a	27.27a	28.64a					
K/root	30.10a	29.29a	28.49a					
Se/curd	3.18a	2.60a	2.6a					
Se/leaf	3.80a	4.07a	3.16a					
Se/root	3.92a	3.72a	3.69a					
(*): Figures of unshared characters are significant at 0.05 level. Duncan test.								

C. Cultivar responses

i. Growth responses of cultivar

Calbrese broccoli showed superiority over organza f1 cauliflower cultivar in root fresh weight (21.26%) and root dry weight (28.4%). Moreover, this cultivar exceeded Difano f1 and organza cauliflower cultivars in chlorophyll percentage out of other leaf pigment by 7.1 and 21.7%, respectively, (Table, 12). It appears that growth responses of Calbrese broccoli cultivars could match best than cauliflowers. Differences between species and cultivars are usually varied in response to any investigate materials applications. These differences could be referred to the gene diversity of a given cultivars (Abdel, 2007).

Table (12). Growth responses of Broccoli and two Cauliflower cultivar.											
CV	lfwt	ldwt	Ino	sfwt	sdwt	rfwt	rdwt	cfwt	cdwt	plh	Chol
Calibers	148.69a	34.7a	24.83a	76.03a	16.01a	41.41a	17.17a	143.35a	29.14a	62.92a	69.44a
di-fano f1	151.74a	37.342a	24.78a	78.79a	16.59a	37.9ab	14.8ab	128.13a	26.28a	62.09a	57.06b
organza f1	136.99a	36.47a	24.53a	78.97a	15.8a	34.15b	13.38b	123.71a	25.39a	62.31a	64.78a

(*):Ifwt=leaf fresh weight (g); ldwt=leaf dry weight (g); lno=leaf number per plant; sfwt stem fresh weig2666.4aht (g); sdfwt=stem dry weight (g); rfwt=root fresh weight (g); rdwt=root dry weight (g); cfwt=curd fresh weight (g); cdwt=curd dry weight (g); plh=plant height (cm); chol= Chlorophyll percentage out of other pigments. (**): Figures of unshared characters are significant at 0.05 level, Duncan test

ii. Cultivar responses to hormonal homeostasis

Significant differences between cultivars were not detected (Table, 13). However, the highest free, bounded, and total IAA confined to Difano f1 (4056, 3970, and 7949 μ g.g, respectively). Whereas, the highest values for free, bounded and total GA₃ was detected in Difano f1 (32017 μ g.g), Calbrese broccoli cultivar (24858 μ g.g) and Difano f1 (56483 μ g.g), respectively. The paramount concentration of free, bounded and total Zeatin found in Difano f1 (1947, 1651, and 3598 μ g.g, respectively). The most potent values of free, bounded, and total Abscisic acid (ABA) detected in organza (726.5, 2031.4, and 2757.9 μ g.g, respectively). The best hormonal homeostasis revealed in Difano cauliflowers, particularly free, bound, and total growth-promoting hormones. Whereas, the highest free, bounded and total ABA detected in Organza cauliflower cultivars. Such differences that showed between cultivars might dedicated to the precise means that applied by producing companies (Abdel, 2009a).

Table (13). Growth of broccoli and two cauliflower cultivars (*)												
CV	IAA-F	IAA-B	AAA-T	GA3-F	GA3-B	GA3-T	ABA-F	ABA-B	ABA-T	Z-F	Z-B	Z-T
Calibers	243.3a	229.4a	472.7a	3021.8a	2485.8a	5507.6a	488.6a	481.2a	969.8a	1883a	1606a	3498a
Di fano	405.6a	397.0a	794.9a	3201.7a	2448.9a	5648.3a	646.0a	496.8a	1142.8a	1947a	1651a	3598a
Organza	Organza 239.9a 396.5a 636.4a 3112.8a 1815.8a 4928.6a 726.5a 2031.4a 2757.9a 1805a 1593a 3398a											
(*): Figures of unshared characters are significant at 0.05 level, Duncan test.												

iii. Cultivar responses to stomata behaviours

Organza cauliflower cultivar (Table, 14 and Figure, 5), showed superiority over Calbrese broccoli cultivar and Difano f1 cauliflower cultivar in stomata population on the lower leaf surface (7.5 and 5.44%, respectively). Significant differenced not found among cultivars in all detected traits. However, the highest lower leaf surface stomata length, stomata aperture length and stomata aperture width accompanied with Calbrese broccoli (10.46, 7.81, 5.8, 3.58 micron, respectively). Whereas, the highest upper surface stomata length (10.1 micron), stomata width (7.49 micron), stomata aperture length (5.09 micron) were concomitant with broccoli. While, stomata aperture width (3.67 micron) were coincided to organza. However, the stomata population at lower leaf surface (1200.6 st.mm⁻²) found in Calbrese, which was significantly lower than that in Organza (7.5%). These differences are due to the gene diversity and its expression capabilities between investigated cultivars.

Table (14). Growth of broccoli and two cauliflower cultivars (*), (**)										
	Stomata d	imensions	of upper leaf	surface		Stomata dim	Stomata dimensions of upper leaf surface			
CV stl Stw stal stawl St Popul. stl stw stal stawl St Popul.										
Calibers	10.1a	7.49a	5.09a	3.27a	1250a	10.46a	7.81a	5.8a	3.58a	1200.60b
Di fano	9.84a	7.22a	5.06a	3.46a	1234.97a	10.14a	7.78a	5.43a	3.55a	1224.23b
Organza 9.99a 7.13a 5.06a 3.67a 1262.17a 10.21a 7.56a 5.34a 3.48a 1290.81a										
(*) popup = stomata population at upper leaf surface; poplo = stomata population at lower leaf surface; stlup = stomata length at upper leaf										

(*) popup = stomata population at upper leaf surface; popio = stomata population at lower leaf surface; stilup = stomata length at upper leaf surface; stalup = stomata aperture length at upper leaf surface; stwup= stomata width at upper leaf surface; stello = stomata length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata width at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower leaf surface; stallo = stomata aperture length at lower length at lower leaf surface; stallo = stomata aperture length at lower leng

(**): Figures of unshared characteristics are significant at 0.05 level Duncan test

iv. Cultivar responses to mineral accumulation in dry weight of curd, leaf, root

The highest Potassium contents of curd, leaf, and root dry matters were 32.07, 29.21, and 29.42 µg.g⁻¹), respectively in Organza. Calbrese and Difano cultivars, Cultivar responses to Zn accumulation (Table, 15) in curd of organza substantially exceeded Calbrese (11.5%). Significant differences in leaf and root Zn content of cultivars not observed. The highest Iron contents of curd, leaf and root dry matters were 580.1, 271.06, and 285.35 µg.g⁻¹), respectively in Calbrese, Difano f1, and Organza, Calcium content of Difano f1 apparently exceeded these of organza (46.89%). Slight differences detected among cultivars in iron contents of dry matter of curds, leaves, and roots. The highest Selenium contents of curd, leaf, and root dry matters were 3.55, 4.31, and 4.04 µg.g⁻¹), respectively in Difano, Organza F1, and Difano cultivars (Table, 15). The highest Nitrogen contents of curd, leaf and root dry matters were 2.78, 2.95 and 2.89%), respectively in Organza, Difano and Organza F1 cultivars. These results revealed the differences in varying cultivar responses. However, these cultivars seem to be insusceptible to Selenium, since they belong to Brassicas, which possesses high tendency to Sulfur accumulations as cyanothiosulfute and other sulfur containing compounds, owing to its ability to convert inorganic Selenium to organic ones. It could be the cause of higher susceptibility of alfalfa plants to Se toxicity under sulfur deficiency. Hence, a greater proportion of Se excluded from protein fraction in cabbage and kohlrabi than in alfalfa. The accumulation of non-toxic species of Se-amino acids suggested being the basis of Se tolerance in some species (Neuhierl et al., 1999). Another explanation is that in cabbage and kohlrabi the majority of Se taken up was associated with organic molecules other than proteins, e.g. glucosinolates, therefore remaining out of protein fraction. Members of Crucifereae contain high concentrations of glucosinolates. There are indications on the association of Se with glucosinolates in Brassica species. For example, an effect of aqueous extracts of Se-fertilized broccoli on animals against oxygen free radicals hypothesized to be due to ingestion of bioactive isothiocyanate derived from glucosinolates (Keck and Finley 2006). Similarly, onion (Allium cepa) and garlic (Allium sativum) shown to have the ability to readily uptake Se from the soil and new analytical methods indicated the presence of Se-alliins, a class of second metabolites in genus Allium (Arnault and Auger 2006).

Table (15). Mineral partitioning between curd, leaves and roots of broccoli and two cauliflower, as influenced by Fulvic-Humic								
acid (*)								
Se/cv	Calbrese	Difano F1	Organza F1					
Zn/curd	178.48b	184.95ab	199.09a					
Zn/leaf	201.78a	182.71a	204.82a					
Zn/root	158.85a	158.22a	156.52a					
Fe/curd	580.10a	458.10a	356.90a					
Fe/leaf	243.12a	271.06a	241.64a					
Fe/root	215.53a	208.86a	285.35a					

Ca/curd	4029.80a	3500.90a	4107.3a				
Ca/leaf	2466.8ab	3193a	2180b				
Ca/root	1870a	1994.90a	2010.4a				
N/curd	2.68a	2.42a	2.78a				
N/leaf	2.75a	2.95a	2.90a				
N/root	2.78a	2.81a	2.89a				
K/curd	29.81a	29.21a	32.07a				
K/leaf	29.21a	28.54a	26.17a				
K/root	29.08a	29.42a	29.37a				
Se/curd	2.68a	3.55a	2.73a				
Se/leaf	3.57a	3.14a	4.31a				
Se/root	3.77a	4.04a	3.51a				
(*): Figures of unshared characters are significant at 0.05 level. Duncan test							

D. Responses to Selenium rate and Fulvic-Humic acids rate combinations

i. Growth responses to Selenium rate and Fulvic-Humic acids rate combinations

Untreated plants (Table, 16), showed the highest curd fresh weight (166.63 g), which confined to untreated. While the lowest curd fresh weight (103.3 g), observed plants irrigate with 0.5 mg.1⁻¹ Se spraved with 1g.1⁻¹ fulvic-humic acids. These results suggested that the adverse effects of Se on curd performance mitigated by the application of 1g.l⁻¹ fulvic-humic acids. The highest leaf fresh weight (197.07 g) and leaf dry weigh (44.19) confined to plants irrigated with 1.5 mg.l⁻¹ Se sprayed with 2g.l⁻¹ fulvic-humic acids. The higher rates of fulvic-humic acids was capable to ameliorate the risk of Se and negatively affected Selenium-free irrigation water. Irrigated plants with 1.5 mg.l⁻¹ Se sprayed by 0 g.l⁻¹ f-h showed the highest leaf number per plant (30.22). The highest stem fresh weight (93.9 g;), stem dry weight (19.29 g), root fresh weight (47.49 g), observed in plants 1.5 mg.l⁻¹ sprayed with 1g.l⁻¹ f-h, 0mg.l⁻¹ Se sprayed 2g.l⁻¹ f-h, 1mg.l⁻¹ Se sprayed with 1g.l⁻¹ f-h, Se 1mg.l⁻¹. The highest root dry weight (20.91 g), plant height (69.49 cm), and chlorophyll percentage (70.3) out of other leaf pigments detected in in plant sprayed with 1g.I-1 f-h, 0.5mg.I⁻¹ Se sprayed with 1g.I⁻¹, 0mg.I⁻¹ sprayed with 1g.I⁻¹, respectively. It seems that both Se and fulvic-humic acids were potent to improve the vegetative growth of plants. However, Se was adversely depressed curd performance where fulvic-humic applications were not capable to overcome this adversity. It demonstrated that sulfur sufficient cabbage and kohlrabi plants concomitant with growth stimulation in response to Se addition expressed a progressive oxidative stress as judged by a lower activity of antioxidant enzymes and accumulation of oxidants. Results imply that the function of antioxidant system of plants could not explain either the growth stimulatory effect of Se in cabbage and kohlrabi or different response of alfalfa plants to Se supplementation (Haji Boland and Amjad, 2007). In relation to fulvic-humic acids, plant growth traits were highly improved owing to their influence on chlorophyll improvements. A positive effect of humic acids on plant growth is confirmed in the study (Ferrara et al., 2007), as well of humic acids in the study (Xu, 1986). A favourable effect of humic and fulvic acids can be mostly observed in the stimulation of the plant root system, and consequently, a growth in its weight even by 60%. A similar growth in the root weight after the application of humic acids (Arancon et al., 2006). Sarir et al. (2005) revealed that using humic acids to induce growth in field crops by 28%. Matysiak et al. (2011) stated that humic and fulvic acids increased maize shoot weight by 40% after two foliar applications. They also showed chlorophyll content improvements in plant leaves as results of using extracts from algae, humic and fulvic acids, but the process of the pigments synthesis is closely dependent on the way of application of the mentioned substances. The strongest effect on the synthesis of chlorophyll was obtained after two foliar applications both with extracts from seaweeds and humic and fulvic acids. An increase in chlorophyll content in leaves after the application of extracts from seaweeds (Blunden et al., 1996). A positive effect of humic acids on chlorophyll content after the application of humic acids was observed (Tejda and Gonzales, 2003; Arancon et al. 2006).

Tab	Table (16). Growth responses as influenced by selenium rates mg.I ⁻¹ and fulvic-humic acids rates mI.I ⁻¹ combinations (*), (**)										*), (**)	
Se/F	u	lfwt	ldwt	Ino	sfwt	sdwt	rfwt	rdwt	cfwt	cdwt	plh	Chol
0.0	0	136.8b	29.789a b	20.889c	78.411a e	17.456a b	37.867a b	16.122а с	166.63a	32.311a	58.1c	60.667a b
	1	127.34b	31.722a b	22c	82.044a d	19.189a	33.022b c	14.322b c	154.17a b	30.978a	55.589c	70.3a
	2	120.5b	27.722b	22.889b c	84.822a c	19.289a	24.522c	11.811c	123.59a b	30.278a b	59.7bc	61.011a b
0.5	0	144.98a b	33.789a b	27.111a b	88.689a b	19.189a	32.011b c	11.967c	151.71a b	28.69ab	69.456a	64.878a b
	1	163.27a b	39.478a b	26.556a b	62.644d e	17.678a b	42.467a b	15.644а с	103.31b	21.667b	69.489a	66.811a b
	2	138.6b	33.567a b	24.778b c	85.311a c	15.378а с	41.2ab	12.7c	108.01b	23.189b	61.511ac	61.944a b
-	0	123.2b	34.189a b	24.444b c	58.478e	16.322а с	31.078b c	13.011c	153.42a b	33.256a	61.122ac	62.444a b
	1	133.86b	42.578a	26.778a b	91.833a b	17.044а с	47.489a	20.911a	122.01a b	25.744b	61.433ac	63.711a b
	2	129.4b	35.489a b	25.222b c	65.256c e	11.944b c	35.511b c	15.156b c	108.2b	25.8339 b	60.322ac	64.144a b
1.5	0	172.76a b	38.644a b	30.222a	73.333a e	11.1c	35.778a с	14.767b c	109.78b	23.1b	69.033ab	66.011a b
	1	162.68a b	42.889a	24.222b c	93.9a	14.9ac	47.011a	18.989b c	144.69a b	29.667a b	63.333ac	60.511b
	2	197.07a	44.189a	21.444c	70.467b e	14.133b c	45.856a	16.133a	135.21a b	18.633b	60.178ac	62.689a b

(*):Ifwt=leaf fresh weight (g); Idwt=leaf dry weight (g); Ino=leaf number per plant; sfwt stem fresh weight (g); sdfwt=stem dry weight (g); rfwt=root fresh weight (g); rdwt=root dry weight (g); cfwt=curd fresh weight (g); cdwt=curd dry weight (g); plh=plant height (cm); chol= Chlorophyll percentage out of other pigments. (**): Figures of unshared characters are significant at 0.05 level, Duncan test.

ii. Hormonal homeostasis in response to Selenium rates and Fulvic-Humic acids rates

The highest free (792 µg.g), bounded (869.3 µg.g) and total (1507.5 µg.g) IAA were observed in plants irrigated with 1 mg.l⁻¹ Se sprayed by 1g.l⁻¹ f-h), 1 mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h, 1 mg.l⁻¹ Se sprayed by 1g.l⁻¹ f-h, respectively. It could be deduced from these results that the combination of fulvic-humic and Se urge higher levels of auxin content to improve cell enlargement performance. Besides, it confirmed the capability of fulvic-humic to overcome selenium adversity impacts (Table, 17). Plants irrigated and sprayed with 1 mg.l⁻¹ Se sprayed by 2g.l⁻¹f-h, 1.5 mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, 1 mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h manifested the highest free (5318 µg.g⁻¹), bounded (3796.2 µg.g⁻¹) and total (7911.4 µg.g⁻¹) GA₃, respectively. This results also confirmed the potency of fulvic-humic acids in mitigating the adversity if Se. The highest free (2501µg.g⁻¹), bounded (2031µg.g⁻¹) and total (4297 µg.g⁻¹) Zeatin contents in dry leaves were recorded in 0.5 mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h, 1 mg.l⁻¹ Se sprayed by 1g.l⁻¹ f-h and 0.5 mg.l⁻¹ Se sprayed by 1g.I⁻¹ f-h, respectively. The highest free (15533µg.g⁻¹), bounded (70788 µg.g⁻¹) and total (77068µg.g⁻¹) ABA were observed in 1mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h, 0mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h and 0mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h, respectively. The coalition between Selenium and fulvic-humic acids, previous investigations confirmed that the beneficial effect of Se for plants considered in two ways. First, Selenium has a beneficial effect on consumers, i.e. animals and human; in some countries with low Se bioavailability in agricultural soils, multinutrient fertilizers for field crops supplemented with Na-selenate to ensure adequate Se intake in domestic agricultural products by humans (Ekholm et al. 1995). Second, due to the promotion of antioxidative system, Se supplementation could increase plant tolerance to environmental stresses and thereby improve growth and yield. One approach to improve crop the tolerance of plants to environmental stresses is to increase their antioxidant capacity (Bowler et al. 1992). On the other hand, fulvic-humic acids found to improve plant growth performance. Since, humic substances are the components of humus and as such are high molecular weight compounds that together form the brown to black hydrophilic, molecularly flexible, polyelectrolytes called humus. Many of the components of humus are heterogeneous, relatively large stable organic complexes. They function to give the soil structure, porosity, water holding capacity, cation and anion exchange, and are involved in the chelation of mineral elements. Elemental analysis of humic substances showed that these substances are primarily composed of carbon, oxygen, hydrogen, nitrogen, and sulfur in complex carbon chains. The aliphatic components that make up approximately 40% 50% of the total, CCCC and 4, 5, and 6 member carbon rings (aromatic components that make up 35 60% of the total) with CC, C N and C=O groupings. Humic and fulvic acids, deriving from coal or soil, exhibit the action similar to extracts from seaweeds, although a bigger importance in the development of the plant root system ascribed to them. Humic acids considered compounds increasing permeability of cellular membranes in plants (Kaya et al., 2005). Humic and

Ta (*)	Table (17). The influence of Se and fulvic-humic acids combination in response to hormone accumulations in broccoli and cauliflower cultivars (*)												
Se u/	/F	IAA-F	IAA-B	IAA-T	GA3-F	GA3-B	GA3-T	ABA-F	ABA- B	ABA-T	Z-F	Z-B	Z-T
0	0	205b	216.5	421.5b	3113.7a	2307.1	5420.	415	732.0	1147.1	2151.5a	1600.6a	3752.1a
			а		С	ac	8ab	b	b	b	b		b
	1	194.4b	159.7	354.1b	2858.1a	1810.1	4697.	559.2	474.2	1033.4	1692.7a	1591.5a	3284.2a
			а		С	ac	1ab	b	b	b	b		b
	2	160.5b	181.7	342.2b	4602.6a	2391ac	6993.	627.9	7078.	7706.8	1679.7a	1827.8a	3507.6a
			а				6a	b	8a	а	b		b
0.5	0	217.5b	155.2	372.7b	3695.0a	2583.3	6278.	601.4	465.8	1067.1	2121.3a	1683.5a	3804.8a
0.			а		b	ac	3ab	b	b	b	b		b
	1	216.9b	194.7	403.5b	3038.6a	2732.1	5770.	800.4	581.8	1382.2	2402.2a	1892.6a	4294.8a
			а		с	ac	7ab	ab	b	b			
	2	185.0b	136.5	332.6b	663.1c	787.1	1450.	383.9	294.0	677.9b	2501a	1719.6a	4220.6a
			а			С	2c	b	b				
-	0	194.5b	215.3	409.8b	1811.8b	1256.4	3068.	421.0	343.8	764.7b	1748.4a	1479.8a	3228.2a
			а		с	bc	2bc	b	b		b		b
	1	792.0a	715.4	1507.5a	3468.9a	1897ac	5365.	837.7	481.7	1319.4	1552.5a	2031a	3583.5a
			а		b		9ab	ab	b	b	b		b
	2	248.3b	869.3	1117.5a	5301.8a	2609.5	7911.	1553.3	315.4	1868.7	1175b	1396.2a	2571.2b
			а	b		ac	4a	а	b	b			
1.0	0	356.1a	330.7	686.7ab	3466.7a	3796.2	7263.	516.9	383.3	900.1b	1518ab	1659.5a	2571.3a
0.		b	а		b	а	0a	b	b				b
	1	419.1a	495.6	914.7ab	3402.9a	3356.5	6759.	386.6	449.5	836.1b	2163.15	1094a	3177.5a
		b	а		b	ab	4a	b	b		2ab		b
	2	354.8a	398.5	753.3ab	1883.8b	1475.5	3359.	340.8	437.4	778.2b	1872.3a	1432.7a	3257.2a
		b	а		С	bc	3bc	b	b		b		b
(*)): Fig	gures of uns	shared cha	aracters are	significant a	t 0.05 level,	Duncan te	st.					

fulvic acids significantly affect an increase in seed germination energy, the intensification of seedling growth, the growth in root weight and shoot development (Katkat *et al.*, 2009).

iii. Stomata behaviours in response to Selenium rates and Fulvic-Humic acids rates

The highest stomata length at the upper leaf surface (11.24micron), stomata width (8.89 micron), the lengthiest stomata aperture (6.17 micron), the widest width (4.57 micron) concomitant to 1.5mg.l-1 Se sprayed by 1g.l-1 f-h, 0mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, 0mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, 1.5 mg.l⁻¹ Se sprayed by 1g.l⁻¹ f-h, respectively. While the lowest stomata population (1162.66 st.mm⁻²) confined to 1.5 mg.l⁻¹ Se sprayed by 1g.l⁻¹ f-h. The highest stomata length at the lower leaf surface (10.86micron), stomata width (8.15 micron), the lengthiest stomata aperture (6.42 micron), the widest width (4.07 micron) concomitant to 0mg.I⁻¹ Se sprayed by 0g.I⁻¹ f-h, 0mg.I⁻¹ Se sprayed by 0g.I⁻¹ fh, 0mg.I⁻¹ Se sprayed by 0g.I⁻¹ f-h, 1.5 mg.I⁻¹ Se sprayed by 1g.I⁻¹ f-h, respectively. The lowest stomata population (1134.02 st.mm⁻²) observed in 1.5mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h, respectively (Table 18). These results suggested that lengthiest stomata aperture and aperture width accompanied to the most effective treatments. Owing to its capability to proceeds gas exchange and thereby better photosynthesis rates. In contrary, the highest stomata population revealed low rates of leaf growth. Since the number of stomata per leaf fixed at the very early leaf primordial stage. Hence, optimal growth rate would disassociate stomata from each other resulting in low stomata population per unit area. Abdel (2007) studied fababeans stomata at lower and upper leaf surface. He found very close results to that obtained in this trail, where stomata numbers at upper and lower leaflet surfaces(r=0.086 and 0.25, respectively, stomata length at upper leaf surface were (r=-0.25), aperture length of upper leaf surface stomata (r=-0.0068) and aperture width of leaf lower surface stomata (r=-0.5*). The effect of humic and fulvic acids on limiting the development of some pathogens is also known, e.g. Fusarium spp. (Yigit and Dikilitas, 2008). Fokin and Sinha (1969) proposed that the derived benefits of the addition of organic matter to the soils might be due to the anion replacement or competition between humate from added OM and phosphate ions on adsorbing surfaces, which in turn would have increased the P availability. Sinha (1972) indicated that fulvic acids and intermediate products of organic matter decomposition had played a significant role in mobilizing soluble phosphates. Pal and Sengupta (1985) observed that when black soil incubated with humic acid, the P availability increased. The reason attributed was phosphate ions expected to interact with humic acid more through its phenolic and hydroxyl groups, which might have changed the behaviour of P. The presence of such functional groups as assessed by infrared spectra analysis would confirm similar action in the treated soil leading to increased P availability.

Table (18). The influence of Se and fulvic-humic acids combination in response stomata behaviour in broccoli and cauliflower cultivars (*), (**)

00											
		Stomata di	mensions	of upper le	eaf surface		Stomata	dimensio	ns of lower	leaf surfa	ace
Se/Fu	/	Stl	stw	stal	stawl	St Popul.	stl	stw	stal	stawl	St Popul.
	0	10.86ab	8.89a	6.17a	3.33ac	1191.29a	10.86a	8.15a	6.42a	3.7a	1211.34bc
0	1	8.88e	6.42de	4.19c	2.59c	1234.25a	10.61a	8 a	5.550a	3.33a	1222.79bc
	2	10.493ad	8.15ac	5.55ac	3.83ac	1271.48a	10.49a	7.53a	5.06a	2.96a	1251.43ac
	0	10.37ae	7.28be	4.69bc	3.33ac	1237.11a	10.74a	8.02a	5.68a	3.58a	1134.02c
0.5	1	9.01de	6.54de	4.44c	2.72bc	1300.11a	9.58a	7.65a	4.8a	3.33a	1185.57bc
	2	9.13ce	6.2e	4.19c	3.0861bc	1225.66a	10.24a	7.77a	5.06a	3.33a	1222.79bc
	0	9.63be	6.78ce	4.44c	2.96bc	1305.84a	10.37a	7.65a	5.93a	3.58a	1214.2bc
1	1	10.25ae	7.53ae	5.43ac	3.95ab	1242.84a	9.87a	7.28a	5.18a	3.46a	1225.66bc
	2	10.62ac	7.9ad	5.92ab	4.44a	1268.61a	9.75a	6.78a	5.06a	3.7a	1311.57ab
	0	9.38be	7.04be	5.06ac	3.46ac	1265.75a	9.87a	7.41a	5.18a	3.46a	1242.84ac
1.5	1	11.24a	8.39ab	6.17a	4.57a	1162.66a	10.5a	8.15a	6.17a	4.07a	1262.89ac
	2	9.75ae	6.29e	4.56bc	3.33ac	1282.93a	10.4a	8.15a	6.17a	3.95a	1377.43a

(*). popup = stomata population at upper leaf surface; poplo = stomata population at lower leaf surface; stlup = stomata length at upper leaf surface; stalup = stomata aperture length at upper leaf surface; stwup= stomata width at upper leaf surface; stwup= stomata width at upper leaf surface; stllo= stomata length at lower leaf surface; stallo =stomata aperture length at lower leaf surface; stwlo= stomata width at lower leaf surface; stawlo= stomata width at lower leaf surface (**): Figures of unshared characteristics are significant at 0.05 level Duncan test

Se	Ful.	cultivars	Upper surface	Lower surface
Se(1.5)	0	Calbrese		
	1		Co o	

2		00	
0	Difano	6169	
1		00	
2		600	C C C

Figure (6): Stomata behaviour of broccoli and cauliflower cultivars

iv. Mineral accumulation in dry matter of curds, leaf, and roots in response to Selenium rates and Fulvic-Humic acids rates

The highest potassium contents in curd (43.47µg.g⁻¹), leaf (32.25 µg.g⁻¹) and root (32.88 µg.g⁻¹) dry matters were confined in 0.5mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, 0.5mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h and 0mg.l⁻¹ Se sprayed by 1g.l⁻¹ f-h, respectively. The highest zinc contents in curd (215.37µg.g⁻¹), leaf (238.44 µg.g⁻¹) and root (202.97µg.g⁻¹) dry matters were confined in 1.5mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, 0mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h and 1.5 mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h, respectively. The highest iron contents in curd (682.2 µg.g⁻¹), leaf (578.1 µg.g⁻¹) and root (313 µg.g⁻¹) dry matters were confined in 0mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, 1.5mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h and 1.5mg.l⁻¹ Se sprayed by 1g.l⁻¹ f-h, respectively. The highest calcium contents in curd (5827.2µg.g⁻¹), leaf (3809.5 µg.g⁻¹) and root (3266.9 µg.g⁻¹) dry matters were confined in 0mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, 0mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h and 1.5 mg.l⁻¹ Se sprayed by 2g.l⁻¹ f-h, respectively. Selenium partitioning among, curd, leaf and root dry matters (Table, 19), manifested that the highest Se contents of these parts were, respectively 5.35, 6.39 and 5.94 µg.g⁻¹ were observed in 0.5mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, nterspectively. The highest is sprayed by 1g.l⁻¹ f-h and 0.5mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h, respectively. The highest nitrogen contents of curd (3.03%), leaf (3.95%) and root (3.99%) dry matters recorded in 0mg.l⁻¹ Se sprayed by 0g.l⁻¹ f-h. It can be deduced from these results that fulvic-humic acids was not able to alter the partitioning ratio of Selenium between curd, leaves and roots, where the highest was in leaves then roots and the curd showed the lowest Se accumulation. This phenomenon attributed to that Se was not toxic to roots, if which otherwise roots should urge

Intl J Farm & Alli Sci. Vol., 5 (2): 126-167, 2016

acquired systematic resistance through sequestering Selenium. Subsequently, Selenium translocated safely to leaves, where inorganic Selenium converted into organic ones to replace sulfur in organic compound namely, methionine, cysteine, protein, and glutathione. A general reduction of protein concentration in response to sulfur deprivation particularly in Se treated plants could be the result of limitation of supply of proper amino acids to proteins or the result of higher destruction, i.e. as a result of Se-induced oxidative stress, which was documented also in this work. Se-methionine shown to be less effective as a substitute for peptide bond formation during translation than methionine. This could reduce the rate of protein synthesis and contribute to Se toxicity (Eustice *et. al.,* 1981).

Table (1	9). The influ	ience of S	e and fulvic-	humic acids	combinati	ion in respor	nse to min	eral accumu	lations in	broccoli and	cauliflower	cultivars
(*), (***) ((0)Se			(0.5)50			(1)50			(1.5)50		
Se/cv	(0)50 (0)Fu-H	(1)Fu- H	(2)Fu-H	(0)Fu-H	(1)Fu- H	(2)Fu-H	(0)Fu- H	(1)Fu-H	(2)Fu- H	(0)Fu-H	(1)Fu-H	(2)Fu- H
Zn/cur d	192.97a b	193.9 7 ab	173.69b c	200.73a b	189.4 6ab	198.48a b	187.2 1ab	202.97a b	209.7 4ab	215.37a	146.63 c	138.53 c
Zn/leaf	238.44a	180.4 6ab	173.70b	180.44a b	202.9 6ab	218.76a b	184.8 0ab	199.69a b	196.2 2ab	196.21a b	191.61 ab	193.96 ab
Zn/root	184.97a b	187.2 2ab	182.70a b	86.46d	116.7 3cd	170.18a b	147.6 2bc	101.39d	123.9 6cd	196.21a	193.97 a	202.97 a
Fe/cur d	682.20a	638.8 0a	401.90a	405.80a	455.2 0a	340.70a	318.9 0a	442.30a	297.2 0a	502.50a	516.80 a	578.10 a
Fe/leaf	682.02a	638.8 0a	401.90a	405.80a	455.2 0a	340.7a	318.9 0a	442.30a	297.2 0a	502.50a	516.80 a	578.10 a
Fe/root	312.7a	242a	241.7a	229.7a	246.6 a	113.3a	229.6 a	116.6a	291.2 a	201.5a	313a	301a
Ca/cur d	5827.2a	3612. 8b	3782.5b	3665.6b	3417. 6b	3722.6b	2838. 8b	3192.4b	4000. 5ab	4468.6a b	3643.9 b	4379.7 ab
Ca/leaf	3809.5a	3206. 6ab	2884.5a b	2539.5a b	2431. 2ab	2589.4a b	2361. 3ab	2700.6a b	1936. 6b	1955.4b	2136.7 ab	2811.3 ab
Ca/roo t	1710ce	2071. 7cd	1682.5c e	2154.3c d	1372d e	1381.4d e	2437b c	964.4e	1677. 7ce	1793.7c e	2989.6 ab	3266.9 0a
N/curd	3.03a	2.35a	2.93a	2.76a	2.46a	2.90a	2.89a	2.97a	1.81a	2.42a	2.80a	2.21a
N/leaf	3.95a	3.37a b	2.79bc	2.64bc	2.44b c	2.70bc	2.88b c	2.58bc	2.22c	2.87bc	2.81bc	3.11ac
N/root	3.99a	2.40b	2.77b	2.53b	2.68b	2.73b	3.13a b	2.97ab	2.94a b	2.53b	2.70b	2.54b
K/curd	26.43c	40.25 ab	31.31ac	43.47a	31.21 ac	25.60c	28.09 bc	32.77ac	28.72 bc	25.50c	25.50c	25.50c
K/leaf	26.85a	27.58 a	27.89a	32.25a	30.38 a	31.53a	25.92 a	26.12a	26.64 a	27.06a	24.98a	28.51a
K/root	28.30ab	32.88 a	29.45ab	32.15a	29.97 ab	30.17ab	30.90 ab	28.82ab	27.06 ab	29.03ab	25.50b	27.27a b
Se/cur d	ND	ND	ND	4.55ab	3.88a b	5.35a	4.33a b	3.57ab	3.32a b	3.84ab	2.94b	3.51ab
Se/leaf	ND	ND	ND	4.16a	6.39a	4.63a	5.67a	5.13a	4.26a	5.35a	4.74a	3.76a
Se/roo t	ND	ND	ND	5.94a	5.72a	5.75a	4.97a	4.33a	4.63a	4.75a	4.80a	4.39a
(*): Figu	ires of unsha	ared chara	acters are sid	gnificant at 0	.05 level,	Duncan test	.(0)means	not detected	b			

E. Cultivar responses to Selenium rates

i. Growth responses of cultivars as influenced by Selenium

Calbrese broccoli cultivar irrigated with 1.5 mg.I⁻¹ showed the highest curd fresh weight (161.69 g), leaf fresh weight (206.7g) and leaf dry weight (44.73g). The highest leaf number (27.33), stem fresh weight (87.33g), stem dry weigh (22.57g), (root fresh weight (47.57 g) and plant height (69.89 cm) were recorded with the dual interaction treatment of Difanof1 cauliflower cultivar irrigated with 0.5 mg.I⁻¹ Se. The highest chlorophyll contents confined to Calbrese broccoli cultivar irrigated with 0.5mg.I⁻¹ Se. While, root dry weight Calbrese broccoli cultivar irrigated with 1mg.I⁻¹ Se. Finally, the highest curd dry weight found in Calbrese broccoli cultivar irrigated with 0mg.I⁻¹ Se (Table, 20). These results suggested that broccoli revealed higher efficacy to Selenium as compared to the other two cauliflower cultivars, this better response might be due to the toughness of broccoli as compared to more delicate cauliflower (Wien, 1997). It well established that varying responses occurred between species and within intra cultivars of the same species. However, such responses are highly related to the ambient environment including selenium, which in some instance high doses impart the growth of plants (Abdel, 2007). These adversities definitely overcome with the

application of low dosages. For instance, Selenium can increase the tolerance of plants to UV-induced stress as well as delay senescence and promote the growth of aging seedlings. In plants grown under high light intensities, Se counteracted senescence-related oxidative stress and maintained green leaf color longer (Xue *et al.* 2001). Although glutathione peroxidase (GPX) containing Se was not identified in plants, Se supplementation consistently increased GPX activity (Hartikainen *et al.* 2000; Xue *et al.* 2001), and inhibited lipid peroxidation (Hartikainen *et al.* 2000). In contrast, the activity of superoxide dismutase (SOD) diminished in response to Se addition (Hartikainen *et al.* 2000; Xue and Hartikainen 2000).

Table	e (20). Gro	owth respo	nses of cu	Itivars to	Se (mg.l ⁻¹)) (*), (**)						
Se/c	v/HOR	Lfwt	ldwt	Ino	Sfwt	sdwt	rfwt	rdwt	cfwt	cdwt	p/H	Chol
0	Barcle s	138.84 bd	27.43b	20.89c	77.78a b	17.76a b	36.31a c	17.89a b	153.44 а	34.12a	55.62c	70.83a
	Difano	126.13 cd	32.41a b	22bc	82.44a b	18.23а с	25.61c	11.81c d	149.94 a	32.24a b	59.91b d	54.98d
	Organ za	119.7d	29.39b	22.89a c	85.06a b	19.94a b	33.49b c	12.56b d	141a	27.20a c	57.856 c	66.17а с
0.5	Barcle s	121.81 cd	27.86b	24.78a с	70.84a b	15.20b d	41.09a b	12.37b d	119.99 a	20.37b c	62.63а с	73.39a
	Difano	181.77 ab	39.89a b	27.33a	87.33a	22.57a	47.57a	17.20а с	123.52 a	29.16а с	69.89a	59.81b d
	Organ za	143.52 bd	39.09a b	26.33a b	78.47a b	14.48b d	27.02c	10.74d	119.52 a	23.93a c	67.93a b	60.43b d
1	Barcle s	128.48 cd	38.78a b	26.33a b	71.01a b	17.33a d	43.49a b	20.48a	138.28 a	31.6ab	64.56а с	65.19а с
	Difano	122.78 cd	36.40a b	24.67а с	64.88b	11.54d	34.88а с	14.26b d	120.51 a	22.04b c	57.61c	58cd
	Organ za	135.21 bd	37.08a b	25.44a b	79.68a b	16.43b d	35.11a c	14.34b d	124.84 a	31.19a b	60.71а с	67.11а с
1.5	Barcle s	206.7a	44.73a	27.33a	84.49a b	13.76b d	44.74a b	17.93a b	161.69 а	30.47а с	68.87a b	68.34a b
	Difano	176.27 bd	40.67a b	25.11a c	80.52a b	14.02b d	43.53a b	16.10a d	118.53 a	21.68b c	60.94c	55.47d
	Organ za	149.54 bd	40.32a b	23.44a c	72.69a b	12.36d	40.37a b	15.86a d	109.46 a	19.26c	62.63a c	65.40a c

(*):lfwt=leaf fresh weght (g); ldwt=leaf dry weight (g); lno=leaf number per plant; sfwt stem fresh weight (g); sdfwt=stem dry weight (g); rfwt=root fresh weight (g); rdwt=root dry weight (g); cfwt=curd fresh weight (g); cdwt=curd dry weight (g); plh=plant height (cm); chol= Chlorophyll percentage out of other pigments. (**): Figures of unshared characters are significant at 0.05 level, Duncan test.

ii. Hormonal homeostasis of cultivars as influenced by Selenium

The highest free (778.5 µg.q-1), bounded (808.4 µg.q-1) and total (1035.5µg.q-1) IAA were recorded with organza cauliflower cultivar irrigated with 1mg.I-1 Se, Difano cultivar irrigated with 1mg.I-1 Se and Difano cultivar irrigated with 1mg.I-1 Se (Table, 21). The highest free (4465 µg.g-1), bounded (4903.4 µg.g-1) and total (8019.5 µg.g-1) GA3 were recorded with Calbrese broccoli cultivar irrigated with 0mg.I-1 Se, Calbrese broccoli cultivar irrigated with 1.5mg.I-1 Se and Calbrese broccoli cultivar irrigated with 1.5mg.I-1 Se. The highest free (278.4 µg.g-1), bounded (2030.1µg.g-1) and total (4057.4 µg.g-1) Zeatin were recorded with organza cauliflower cultivar irrigated with 0.5mg.I-1 Se, Difano f1 cultivar irrigated with 0mg.I-1 Se and organza cultivar irrigated with 0.5mg.I-1 Se. The highest free (1657.1 µg.g-1), bounded (7238.2 µg.g-1) and total (7888.8 µg.g-1) ABA were recorded with Calbrese cauliflower cultivar irrigated with 1mg.I-1 Se, Calbrese cultivar irrigated with 0mg.I-1 Se and Calbrese cultivar irrigated with 0mg.I-1 Se. Once again, Calbrese proved its potency to cope with Selenium, as compared to cauliflower cultivars. This Superiority might be came from its capability to regulate the hormonal interactions for his favor under the stress of light and heat that were prevailed during growing season. In a pot experiment, using low Se soils amended with increasing dosage of H2SeO4 it observed that at low concentrations of added Se it acted as an antioxidant, whereas at higher concentrations it was a pro-oxidant. This dual effect of Se coincided with promotion and inhibition of plant growth (Hartikainen et al., 2000). These observations indicate that Se may have particular biological functions in higher plants through alteration of antioxidant defense system. Therefore, it was found that under short wave lights for instance violet and ultraviolet, plants usually adapt defense system to avoid short wave

damage through anthocyanin synthesis mechanism and thus plants showed stunting stature as in alpine plants where short waves block Gibberellins synthesis earlier in its synthesis pathways (Taiz and Zeiger, 2002). Subsequently, sucrose-induction of the anthocyanin synthesis pathway repressed by the addition of Gibberellic acid (GA) whereas jasmonate (JA) and Abscisic acid (ABA) had a synergic effect with sucrose. The gai mutant was less sensitive to GAdependent repression of dihydroflavonol reductase. This would seem to prove that GAI signaling is involved in the crosstalk between sucrose and GA in wild-type Arabidopsis seedlings. Conversely, the inductive effect of sucrose was not strictly ABA mediated. Sucrose induction of anthocyanin genes required the COI1 gene, but not JAR1, which suggests a possible convergence of the jasmonate- and sucrose-signaling pathways. These results suggested the existence of a crosstalk between the sucrose and hormone signaling pathways in the regulation of the anthocyanin biosynthetic pathway. Ethylene appears to have a univocally positive effect on anthocyanin accumulation, whereas the results are contradictory for gibberellins (GAs), which appear to have a positive role on flowers while playing a repressive role on various other plant tissues. The published evidence on the effects of ABA, auxin (2,4dichlorophenoxyacetic acid, 2,4 D), and Cytokinin is contradictory, although these results can be explained by taking into account the different plant species/organs studied. Most of these studies, however, do not analyze the effects of plant hormones in terms of genes, apart from the work of Devoto et al. (2005) who showed that JA could induce the expression of some anthocyanin related genes such as chalcone synthase, anthocyanidin synthase and leucoanthocyanidin dioxigenase in Arabidopsis.

Tal	ole (21). Hor	mone accu	umulation	s in respo	nses to cu	ltivars and	se interactio	on (mg.l ⁻¹)	(*)				
Se/	/cv/HOR	IAA-F	IAA-B	AAA-T	GA3-F	GA3-B	GA3-T	ABA-F	ABA-B	ABA-T	Z-F	Z-B	Z-T
0	Barcles	246.5a	231.2	477.6a	4465.0	1875.6b	6340.6a	650.6b	7238.2	7888.8	2323.5a	1163.6	3487.1a
		b	а		а		b		а	а		а	b
	Difano	1538b	152.3	306.2a	3600.2	2340.6b	5940.8a	520.0b	480.4b	1000.4	1517.8b	2030.1	3547.9a
			а		а		b			b		а	b
	Organza	159.6b	174.4	334.0a	2465.6	2292.0b	4830.1a	431.5b	566.5b	998.0b	1682.5b	1826.2	3508.7a
			а		а		b					а	b
0.5	Barcles	251.1a	191.3	442.4a	3120.9	3221.7a	6342.7a	672.5b	656.0b	1328.5	2029.6a	1672.4	3702.1a
Ŭ.		b	а		а	b	b			b	b	а	b
	Difano	157.3b	141.4	298.8a	1982.3	1732.0b	3714.3b	301.9b	353.8b	655.8b	2112.2a	1871.3	3983.6a
			а		а						b	а	
	Organza	222	148.5	367.7a	2293.5	1148.8b	3442.3b	811.1b	331.8b	1142.9	2874a	1751.9	2039.3b
		ab	а		а					b		а	
-	Barcles	2293a	765.5	994.9a	3032.2	1188.5b	4220.7b	1657.1	386.2b	2043.3	1600.2b	1274.3	2874.5b
		b	а		а			а		b		а	
	Difano	2270a	808.4	1035.5	3408.7	2865.9b	6274.6a	523.5b	305.8b	829.2b	1654.9b	1859.1	3514.1a
		b	а	а	а		b					а	b
	Organza	778.5a	226.1	1004.5	4141.6	1708.6b	5850.2a	631.4b	448.8b	1080.2	1207b	1774.3	3981.3a
			а	а	а		b			b		а	
	Barcles	391.7a	393.5	785.2a	3116.1	4903.4a	8019.5a	344.7b	446.0b	790.7b	1548.9b	1101.3	2650.2b
		b	а		а							а	
	Difano	359.7a	4129	772.6a	2907.8	1512.2b	4419.9b	486.3b	421.6b	907.9b	2127.9a	1929.5	4057.4a
		b	а		а						b	а	
	Organza	378.6a	418.4	796.9a	2729.5	2212.7b	4942.2a	413.3b	402.5b	815.8b	1876.6a	1155.4	3032ab
		b	а		а		b				b	а	
(*):	Figures of u	nshared c	haracters	are signifi	cant at 0.0)5 level. Dui	ncan test.						

iii. Stomata dimensions of cultivars as influenced by Selenium

The highest stomata length at the upper leaf surface (11.11micron), stomata width (8.52 micron), the lengthiest stomata aperture (5.8 micron), the widest width (4.32 micron) were recorded in Difano f1 irrigated 1mg.l⁻¹ Se. The lowest stomata population (1159.79 st.mm⁻²) was concomitant to Organza irrigated with Omg.l⁻¹ Se sprayed. The highest stomata length at the lower leaf surface (10.86micron), stomata width (8.39 micron), the lengthiest stomata aperture (6.05micron), the widest width (4.07 micron) and lowest stomata population (1131.16 st.mm⁻²) were concomitant to Calbrese 0mg.l⁻¹ Se, organza 0.5mg.l⁻¹ Se, Calbrese 1.5mg.l⁻¹ Se, Difano 1.5 mg.l⁻¹ Se, Difano 0.5 mg.l⁻¹ Se respectively (Table, 22). It inferred from these results that Difano was the most responded cultivar to Selenium as compared with the other two cultivars namely Organza and Calbrese. As it mentioned above that, the lowest stomata population and the lengthiest stomata aperture confined with the maximum leaf growth (Abdel, 2007). There are numerous examples of plasticity in stomata densities within species, with changes readily induced through

exposure of developing leaves to changed atmospheric CO₂ concentrations (Woodward *et al.*, 2002), drought stress (Abdel, 2006); drought stress hormone Abscisic acid (Franks *et al.*, 2001; Al-Hamadany, 2005).

Table	e (22). Stoma	ata behaviour	in response	e to cultiva	rs and Se ii	nteraction (mg	J.I ⁻¹) (*), (**)				
		Stomata dir	nensions o	f upper lea	f surface		Stomata din	nensions of i	upper leaf su	urface	
Se/cv	//	Stl	stw	stal	stawl	St Popul.	stl	stw	stal	stawl	St Popul.
	Barcles	10.12ac	7.9ab	5.55ab	3.21ab	1225.66a	10.86a	8.0239a	5.8019a	3.9502a	1205.61b
0	Difano	9.88ac	7.78ab	5.31ab	3.33ab	1311.57a	10.49a	7.9004a	5.6784a	2.9627a	1211.34b
	Organza	10.25ab	7.78ab	5.1ab	3.21ab	1159.79a	10.62a	7.7770a	5.5550a	3.0861a	1268.61ab
	Barcles	9.63ac	7.16ac	4.81ab	3.33ab	1245.70a	9.83a	7.1598a	4.6909a	2.7158a	1205.61b
0.5	Difano	10.25ab	6.79bc	4.32b	3.21ab	1179.84a	10.25a	7.9004a	5.8019a	4.0737a	1131.16b
	Organza	8.64c	6.05c	4.19b	2.59b	1337.34a	10.49a	8.3942a	5.0612a	3.4564a	1205.61b
	Barcles	9.51bc	6.91bc	4.94ab	3.33ab	1328.75a	9.99a	7.2832a	5.5550a	4.0737a	1219.93b
1	Difano	11.11a	8.52a	5.8a	4.32a	1191.29a	9.99a	7.5301a	5.8019a	3.5799a	1251.43ab
	Organza	9.88ac	6.79bc	5.06ab	3.7ab	1297.25a	9.99a	6.9129a	4.8143a	3.0861a	1280.07ab
	Barcles	9.9990ac	7.16ac	5.06ab	3.33ab	1225.66a	10.62a	8.1473a	6.0488a	4.0737a	1285.80ab
1.5	Difano	10.49ab	7.53ac	5.43ab	4.19a	1228.52a	10.3693a	8.0239a	6.0488a	4.0737a	1219.93b
	Organza	9.88ac	7.04ac	5.31ab	3.83ab	1257.16a	9.7521a	7.5301a	5.4316a	3.3330a	1377.43a
(*) po	opup = stoma	ata populatior	n at upper l	eaf surface	; poplo = s	stomata popul	ation at lower	leaf surface	; stlup = sto	mata length	at upper leaf
surfa	ce; stalup =	stomata aper	ture length	at upper le	eaf surface	; stwup= stom	ata width at u	ipper leaf su	rface; stwup	= stomata w	vidth at upper
leaf s	surface; stllo=	= stomata len	gth at lowe	er leaf surfa	ice; stallo =	stomata aper	ture length at	lower leaf s	urface; stwl	o= stomata v	width at lower

leaf surface; stawlo= stomata width at lower leaf surface

(**): Figures of unshared characteristics are significant at 0.05 level Duncan test

iv. Mineral accumulations in cultivar leaves as influenced by Selenium

The highest nitrogen contents of curd (3.31%), leaf (4.91%) and root (3.08%) dry maters were recorded in Calbrese irrigated by 0mg.I⁻¹ Se, Difano irrigated by 0mg.I⁻¹ Se and Calbrese irrigated by 0mg.I⁻¹ Se, respectively. The highest potassium contents in curd $(37.97 \ \mu g.g^{-1})$, leaf $(33.4 \ \mu g.g^{-1})$ and root $(32.15 \ \mu g.g^{-1})$ dry matters were confined in Difano 0.5mg.I⁻¹ Se, Difano 1mg.I⁻¹ Se and Difano 0mg.I⁻¹ Se, sprayed, respectively. The highest zinc contents in curd $(218.74 \ \mu g.g^{-1})$, leaf $(236.2 \ \mu g.g^{-1})$ and root $(202.98 \ \mu g.g^{-1})$ dry matters confined in Organza 1mg.I⁻¹ Se, Calbrese 1.5mg.I⁻¹ Se and Organza 1.5 mg.I⁻¹ Se, respectively. The highest iron contents in curd $(696 \ \mu g.g^{-1})$, leaf $(380.1 \ \mu g.g^{-1})$ and root $(399.5 \ \mu g.g^{-1})$ dry matters were confined to Calbrese 0mg.I⁻¹ Se, Difano 0.5mg.I⁻¹ Se, Organza irrigated by 1.5mg.I⁻¹ Se, respectively. The highest calcium contents in curd $(4800.9 \ \mu g.g^{-1})$, leaf $(4121.7 \ \mu g.g^{-1})$ and root $(2905.4 \ \mu g.g^{-1})$ dry matters confined in Calbrese 0mg.I⁻¹ Se, Difano 0.5mg.I⁻¹ Se, Organza irrigated by 1.5mg.I⁻¹ Se, respectively. The highest calcium contents in curd $(4800.9 \ \mu g.g^{-1})$, leaf $(4121.7 \ \mu g.g^{-1})$ and root $(2905.4 \ \mu g.g^{-1})$ dry matters confined in Calbrese 0mg.I⁻¹ Se, Difano 0.5mg.I⁻¹ Se, Organza irrigated by 0.5mg.I⁻¹ Se, Difano irrigated with 0.5 mg.I⁻¹ Se, Organza irrigated by 0.5mg.I⁻¹ Se, Difano irrigated with 0.5 mg.I⁻¹ Se, Organza irrigated by 0.5mg.I⁻¹ Se, Difano irrigated with 0.5 mg.I⁻¹ Se, Organza irrigated by 0.5mg.I⁻¹ Se, Difano irrigated with 0.5 mg.I⁻¹ Se, Organza irrigated by 0.5mg.I⁻¹ Se, Difano irrigated by 0.5mg.I⁻¹ Se, Difano irrigated with 0.5 mg.I⁻¹ Se, Organza irrigated by 0.5mg.I⁻¹ Se, Difano irrigated by 0.5mg.I⁻¹ Se, Difano irrigated with 0.5 mg.I⁻¹ Se, Organza irrigated by 0.5mg.I⁻¹ Se, Difano irrigated by 0.5mg.I⁻¹ Se, Difano irrigated by 0.5mg.I⁻¹ Se, Difano irrigated b

Table (23	3). Mineral	accumulatio	ons in respo	onse to culti	vars and Se	e interactior	n (mg.l ⁻¹) (*),				
	(0)Se			(0.5)Se			(1)Se			(1.5)Se		
Se/cv	Brocc	Difano	Organz	Brocc	Difano	Organz	Brocc	Difano	Organz	Brocc	Difano	Organz
			а			а			а			а
Zn/curd	175.96	180.44a	204.22a	189.47a	202.98a	196.22a	193.98a	187.20a	218.74a	154.51c	169.1	176.84
	bc	С	b	С	b	b	С	С			8bc	bc
Zn/leaf	180.44	175.96a	236.2a	218.76a	180.44a	202.96a	202.82	189.47a	188.42a	205.11a	184.9	191.69
	а										8	а
Zn/root	184.98	187.20a	182.71a	132.86b	116.81b	123.70b	125.88b	130.39b	116.70b	191.70a	198.4	202.98
	а										7a	а
Fe/curd	696a	510.4a	516.4a	512.5a	457.2a	232.1a	432.4a	319a	307.1a	679.3a	545.9	372.2a
											а	
Fe/leaf	286.1a	289.3a	367.1a	238a	380.1a	113.6a	159a	176.8a	293.3a	289.3a	238a	192.6a
Fe/root	295ab	259.7ab	241.7ab	155.1b	204.4ab	230.1ab	170.9ab	196.5ab	270.1ab	241.2ab	174.8	399.5a
											ab	
Ca/cur	4800.9	4301.3a	4120.3a	3298.1a	3661.3a	3846.4a	3527.5a	2328.5b	4175.7a	4492.5a	3712.	4287ab
d	а	b	b	b	b	b	b		b		6ab	
Ca/leaf	2781.8	4121.7a	2997.1a	2499.6a	2663.5a	2397ab	2401/2a	2974.3a	1623b	2184.7b	3015.	1703.1
	ab		b	b	b		b	b			5ab	b
Ca/root	1695.6	1966.3b	1802.3b	1694.4c	1436d	1777.3b	1184.4d	2073.5a	1821.1b	2905.4a	2503.	2641ab
	cd	d	d	d		d		d	d		8ac	

N/curd	3.31a	2.50a	2.51a	2.28a	2.49a	3.37a	2.68a	2.56a	2.43a	2.46a	2.14a	2.83a
N/leaf	2.89b	4.19a	3.03b	2.71b	2.64b	2.43b	2.49b	2.55b	2.65b	2.90b	2.41b	3.48ab
N/root	3.08a	3.01a	3.07a	2.71a	2.56a	2.66a	2.80a	3.17a	3.08a	2.53a	2.50a	2.73a
K/curd	37.97a	23.63cd	36.41ac	35.16ac	35.68ac	29.44ad	24.25bd	28.41ad	36.93ab	21.86d	29.14	25.50a
											ad	d
K/leaf	30.90a	26.74ab	24.67b	31.01ab	33.40a	29.76ab	28.82ab	24.77b	25.08b	26.12ab	29.24	25.19b
	b										ab	
K/root	30.17a	30.49ab	29.97ab	28.20ab	32.15a	31.94ab	29.55ab	27.47ab	29.76ab	28.41ab	27.58	25.81b
	b										ab	
Se/curd	0.00e	0.00e	0.00c	4.42ab	4.91a	4.45ab	4.01ac	5.18a	2.03cd	2.29bd	4.12a	3.88ac
											с	
Se/leaf	0.00c	0.00c	0.00c	5.36ab	4.48ab	5.35ab	5.48ab	3,32b	6.20a	3.46ab	4.78a	5.61ab
											b	
Se/root	0.00c	0.00c	0.00c	6.69a	5.13ab	5.59ab	4.74ab	4.57ab	4.62ab	3.66b	6.47a	3.82b
(*): Figure	es of unsh	ared charac	ters are sig	nificant at 0).05 level, D	Duncan test						

F. Cultivar responses to Fulvic-Humic acids

i. Cultivar growth responses to Fulvic-Humic acids Calbrese broccoli cultivar sprayed with 0mg.l⁻¹f-h (Table, 24) exhibited the highest curd fresh weight (160.59g), curd dry weight (32.98g), and plant height (68.01 cm). Difano sprayed with 2mg.l⁻¹f-h showed the highest leaf fresh weight (157.22g). The highest leaf dry weight (41.2g), leaf number (26.08), stem fresh weight (84.79g), stem dry weight (18.73), root fresh weight (46.33 g), root dry weight (19.67g) and chlorophyll percentage (71.96%) were found in organza 1mg.l⁻¹f-h, Difano 0mg.l⁻¹f-h, Difano 1mg.l⁻¹f-h, Difano 1mg.l⁻¹f-h, Calbrese 1mg.l⁻¹f-h, Calbrese 1mg.l⁻¹f-h and Calbrese 1mg.l⁻¹f-h, respectively. Fulvic-humic acids left remarkable signs on growth traits, which might be due to its high nutritional contents. The humic substance is assumed to be formed by microbial activities and chemical processes which can involve both degradation and polymerization (Hedges, 1988; Stevenson 1994; McKnight and Aiken, 1998). The biopolymer-degradation model proposes that organic macromolecules such as carbohydrates and proteins partially degraded and biopolymers such as lignin transformed into humic substances. The bioticcondensation model proposes that spontaneous abiotically heteropoly condensation reactions among small reactive intermediates for example amino acids, phenols and sugars released during enzymatic breakdown of bio macromolecules can produce extremely complex assemblages of molecules that exhibit a brown colour (Calace et al., 2005). These macromolecules are interesting because of their structural features, which includes binding sites with different complexing strength, able to form inert and labile complexes with metals (Yamamoto and Ishiwatary, 1992).

Table (2	4) Growth	rasnonsas	to fulvic-h	umic acid	and cultivar	interactio	n (*) (**)					
		If we			ofut	adut	rf14.t	rdut	Cfut	odut	Dib	Chol
Fu-H/CV	IRAIIS	IIWL	Luwi	INO	SIWL	Suwi	ΠWL	Tuwi	CIWI	Cawi	FIII	Choi
	Calbres	144 000	33.84	25.50	70.630	17.28	36 78ab	16.0420	160 500	32.082	68 012	70 222
0		144.334	а	а	73.05a	а	50.70ab	10.0440	100.554	52.50a	00.014	70.22a
Fu-H	Difano		32.98	26.08		16.20		10.00		25.31a		
		152.18a	а	а	72.72a	а	33.58b	13.83bc	126.49ab	b	63.26ab	56 C
	Organ	400.04 -	35.48	25.42	74.00-	14.58	00.40	40.00-	4.47.00-1	29.66a	00-1	64.28a
	5	136.21a	а	а	71.83a	а	32.18D	12.03C	147.08ab	b	62ab	b
	Calbres	4 40 70-	36.46	25.08	04.04*	16.45	40.00-	40.07-	450 40 ab	30.19a	00 74 ah	74.00-
1		149.72a	а	а	81.34a	а	46.33a	19.67a	153.48ab	b	63.71ab	71.96a
Fu-H	Difano	4.45.00	39.84	25.17	0.4 70	18.73	40.04.1	17.00	407.00	28.33a		55.40
		145.86a	а	а	84.79a	а	42.21ab	17.23ab	127.36ab	b	60.98ab	55.13C
	Organz	444 70	41.20	24.42	04.00	16.43		45.50	440.001			00.04
	a	144.78a	а	а	81.68a	а	38.96ab	15.50ac	112.30b	22.52b	62.69ab	68.91a
	Calbres	450.40	33.80	23.92	07.40	14.31		45 70	445.00	24.24a	57 OF	66.14a
2		152.18a	а	а	67.12a	а	41.12ab	15.79ac	115.98ab	b	57.050	b
Fu-H	Dlfano	457.00	39.20	23.08	70.00	14.84	07.00.1	40.47	400 50 1	25.20a	00.04	00.001
		157.22a	а	а	78.88a	а	37.90ab	13.47bC	130.53ab	b	62.01ab	60.06bC
	Organz	100.00	32.73	23.75	00.40	16.41	04.001	10.50	400 74	24.01a		
	a	129.99a	а	а	83.40a	а	31.30b	12.59bc	109.74b	b	62.23ab	61.14bc

(*):Ifwt=leaf fresh weight (g); Idwt=leaf dry weight (g); Ino=leaf number per plant; sfwt stem fresh weight (g); sdfwt=stem dry weight (g); rfwt=root fresh weight (g); rdwt=curd fresh weight (g); cdwt=curd dry weight (g); plh=plant height (cm); chol= Chlorophyll percentage out of other pigments

. (**): Figures of unshared characters are significant at 0.05 level, Duncan test.

ii. Hormonal homeostasis in responses to Fulvic-Humic acids

The highest free (2545 µg.g⁻¹), IAA bounded (6507 µg.g⁻¹) and total (9052 µg.g⁻¹) IAA were recorded with Calbrese cultivar sprayed with 2 mg.g⁻¹f-h, Difano cultivar sprayed with 2mg.g⁻¹ and Difano cultivar sprayed with 2mg.g⁻¹ f-h, respectively (Table, 25). The highest free (4343.9µg.g⁻¹), bounded (3643.1µg.g⁻¹), and total (7987µg.g⁻¹) GA₃ recorded with Calbrese cauliflower cultivar sprayed with 1mg.g⁻¹f-h, respectively. The highest free (2047.9 µg.g⁻¹), bounded (1998.9µg.g⁻¹) and total (3937..9 µg.g⁻¹) Zeatin were recorded with organza cauliflower cultivar sprayed with 1mg.g⁻¹f-h, Difano cultivar sprayed with 1mg.g⁻¹ and Difano cultivar sprayed with 2mg.g⁻¹ f-h, respectively. The highest free (1369.5µg.g⁻¹), bounded (5309.4µg.g⁻¹), and total (6678.9µg.g⁻¹) ABA recorded with Calbrese cultivar sprayed with 2mg.g⁻¹f-h. The beneficial of hormonal homeostasis brought up to optima growth, especially when plants provided with required nutrients and moisture. The preferential sorption of aromatic humic moieties to aluminum (Al) and iron (Fe) oxides were detected (McKnight *et al.*, 1992; Gu *et al.*, 1995).

Ligand exchange-surface complexation proposed as the dominant interaction mechanism for sorption of humic substances on Fe oxide (Gu *et al.*, 1994). Yoon *et al.* (2005) found that weak outer-sphere type complexes would play an important role during the interaction of humic substances with boehmite (γ-AlO(OH)). Other factors, such as the stereo chemical arrangement of the functional groups on humic substances may also lead to preferential sorption of certain humic fractions (Gu *et al.*, 1994). Strong interaction between Elliot soil humic acid (ESHA) and hydrous Al oxide (HAO) led to ESHA-promoted dissolution of HAO and surface charge reversal. The ESHA-HAO sorption–desorption isotherms were successfully described using a modified Langmuir model that accounted for the heterogeneity of HAO surface and ESHA. Ligand exchange proposed as the major interaction mechanism and the edge Al atoms on HAO surface considered as the sorption sites for ESHA macromolecules. ESHA coated onto HAO to achieve two different organic content (*f*oc) levels of 0.81 and 1.52% (Gu *et al.*, 2007). Sorption results compared for the binary ESHA-tetracycline and HAO-tetracycline systems, and the ternary ESHA-HAO tetracycline system. The coating of ESHA on HAO significantly suppressed tetracycline sorption levels, which was attributable to altered HAO surface charge characteristics and/or direct competition between ESHA and tetracycline for potential sorption sites. Higher Organic content (*f*oc) level, besides increasing the extent of sorption suppression, also resulted in greater ionic strength dependence and increased nonlinearity of sorption behavior.

Table	(25). Horm	nonal hom	neostasis	responses	to fulvic-h	umic acid a	nd cultivar	interaction	ı (*),				
Fu-H/o	cv/HOR	IAA-F	IAA-B	IAA-T	GA3-F	GA3-B	GA3-T	ABA-F	ABA-B	ABA-T	Z-F	Z-B	Z-T
0 Fu	Calbre	2459	2505	4964a	26682	2496.4a	51647	3395b	5466a	886.1b	1962.7	1344.9a	3307.6
÷	se	а	а		а	b	ab				а		а
	Difano	2262	2373	4635a	31565	2264.1a	54207	4958b	3592a	855b	1715.5	1807.8a	3523.2
		а	а		а	b	ab				а		а
	Organ	2578	2004	4582a	32406	2696.7a	59373	6304a	5378a	1168.2	1975.4	1664.8a	3640.2
	za F1	а	а		а	b	ab	b		b	а		а
т -	Calbre	3380	705.8	1043.9	4343.9	3643.1a	7987a	7847a	6888a	1473.6	1942.4	1255.1a	3197.4
Ì	se	а	а	а	а			b		b	а		а
	D''	4007	0.400		00705	10.10.0	404.47	00001	4407	0407	4007.0	1000 5	0000 4
	Difano	1927	2483	4411a	22725	1942.2a	42147	39800	4187a	8167b	1867.6	1998.5a	3866.1
		а	а		a	D	b				а		а
	Organ	686a	2221	8999a	29692	1761 5b	47431	7552a	3828a	1138h	2047 9		3752 5
	za F1	0000	a	00000	a	1701.00	b	b	00200	11000	a		a
			-		-		-	-				1704.6a	
ΠN	Calbre	2551	2297	4848a	32886	2252.4a	55410	13695	5309.4	6678.9	1721.6	1308.63	3030.2
Ŧ	se	а	а		а	b	ab	а	а	а	а	2a	а
	Difano	2545	6507	9052a	34952	2131.6a	56268	4800b	3933a	873.3b	1976.6	1961.3a	3937.9
		а	а		а	b	ab				а		а
	Organ	2101	3091	5193a	25548	1063.4b	36181	3299b	3916a	721.5b	1723.2	1512.4a	3235.6
	za ⊢1	а	а		а		a				а		а
(*): Fig	Lures of ur	shared d	haracters	are signifi	cant at 0.0	5 laval Dun	can test		L				

iii. Stomata behaviour of cultivars in responses to Fulvic-Humic acids

The highest stomata length at the upper leaf surface (10.74 micron), stomata width (8.05 micron), the lengthiest stomata aperture (5.56 micron), the widest width (4.07micron), lowest stomata population (1176.9 mm⁻²) were recorded in Difano f1 2ml.l¹f-h, Calbrese 0ml.l¹f-h, Difano 2mg.g-1f-h, and Organza 2ml.l¹f-h, respectively (Table, 26). The highest stomata length at the lower leaf surface (10.92 micron), stomata width (8.05 micron), the lengthiest stomata aperture (6.11 micron), the widest width (3.8micron), lowest stomata population (1181.27mm⁻²) were recorded in Calbrese 0ml.l-1f-h, Calbrese 0ml.l-1f-h, Difano 2ml.l-1f-h, Difano 2ml.l-1f-h and Difano 0mg.g-1f-h, respectively. Stomata behaviour reflected the leaf growth at cellular levels. The best responses cultivars to fulvichumic acids confined to Difano and Calbrese, which attributed to the positive effects of K organic matter on leaf growth performances. The enhanced microbial activity due to humic acid application would also have paved way for the increased availability of K through reducing its fixation in the soil and dissolution of fixed K. Further, the K that contained (6.25%) in the potassium humate, which was applied as a source of humic acid in the present study, would also have contributed for the increase of soil K under submerged condition. With the increasing period of incubation. the K availability increased significantly. The probable exchange between hydronium ions and exchangeable K might be a reason for the increase in K availability (Bama et al., 2003). Tan (1978) reported that, at pH 7.0, humic and fulvic acids were capable of dissolving small amounts of K from the minerals by chelation, complex reactions, or both. The amount released reported to increase with time and reach a maximum at 800 to 8000 hours. A steady increase in the available K from 15th to 90th day might be due to solubilizing effect caused by humic acid coupled with the release from exchangeable sites by other cations (Khan et al. 1997).

Table	(26). Stor	nata behav	iours re	sponses	to fulvic-	numic acid a	and cultiva	r interaction	on (*), (**)).	
		Stomata	dimensi	ions of u	pper leaf	surface	Stomata	dimensior	ns of lowe	er leaf su	rface
Fu- H/cv/s	tomata	stl	stw	stal	stawl	St Popul.	stl	stw	stal	stawl	St Popul.
0	Calbre s	10.28a b	8.05 a	5.56 a	3.52a b	1234.97 a	10.92a	8.05a	6.10a	3.61a	1187.71 b
Fu- H	Difano	10.55a b	7.59 a	5.09 a	3.52a b	1258.59 a	10.09a	7.50a	5.74a	3.43a	1181.27 b
	Organ za	9.35b	6.85 a	4.63 a	2.78b	1256.44 a	10.37a	7.87a	5.56a	3.70a	1232.82 b
1 Fu-	Calbre s	9.63ab	6.94 a	4.99 a	3.06a b	1254.30 a	9.96a	7.50a	5.28a	3.70a	1234.97 b
Fu- H	Difano	9.99ab	7.59 a	4.99 a	3.70a b	1247.85 a	9.99a	7.96a	5.65a	3.80a	1207.04 b
	Organ za	9.91ab	7.13 a	5.18 a	3.61a b	1202a	10.46a	7.87a	5.37a	3.15a	1230.67 b
2	Calbre s	9.54ab	6.85 a	4.72 a	3.33a b	1280.1a	10.09a	7.41a	5.18a	3.80a	1265.03 b
Fu- H	Difano	10.74a	7.78 a	5.56 a	4.07a	1176.9a	10.74a	8.05a	6.11a	3.80a	1222.08 b
	Organ za	9.72ab	6.76 a	4.91 a	3.61a b	1329.5a	9.81a	7.22a	4.72a	2.87a	1385.31 a
(*) po	pup = stor	nata popul	ation at	upper le	eaf surfac	e; poplo =	stomata p	opulation	at lower I	eaf surfa	ce; stlup =

stomata length at upper leaf surface; stalup = stomata aperture length at upper leaf surface; stwup= stomata width at upper leaf surface; stwup= stomata width at upper leaf surface; stillo= stomata length at lower leaf surface; stallo =stomata aperture length at lower leaf surface; stwlo= stomata width at lower leaf surface; stawlo= stomata width at lower leaf surface

(**): Figures of unshared characteristics are significant at 0.05 level Duncan test.

iv. Mineral accumulations in cultivar leaves in responses to Fulvic-Humic acids

The highest Selenium contents of curd, leaf and root dry matters (Table, 27) were 4.52, 5.28**9** and 4.38µg.g⁻¹, they were detected in Difano 0ml.l⁻¹ f-h, Organza 1ml.l⁻¹, Difano irrigated by 1ml.l⁻¹, respectively. The highest N contents of curd, leaf and root dry matters were 3.21, 3.38**5** and 3.23%, they detected in Calbrese 0ml.l⁻¹ f-h, Organza 0ml.l⁻¹, Difano 0ml.l⁻¹, respectively. The highest Potassium contents of curd, leaf and root dry matters were 32.77, 30.3, and 32.23 µg.g⁻¹, they detected in Difano 1ml.l⁻¹ f-h, Difano 2ml.l⁻¹, Difano 0ml.l⁻¹, respectively. The highest Zinc contents of curd, leaf and root dry matters were 204.78, 222.24**9** and 181.33 µg.g⁻¹, they were detected in Organza 2ml.l⁻¹ f-h, Organza 0ml.l⁻¹ f-h, Organza 0ml.l⁻¹, respectively. The highest Iron contents of curd, leaf and root dry matters were 605.1, 326.3, and 329.13 µg.g⁻¹, they detected in Difano 1ml.l⁻¹ f-h, Organza 1ml.l⁻¹ f-h, Organza 2ml.l⁻¹ f-h, Difano 2ml.l⁻¹ f-h, Organza 2ml.l⁻¹ f-h, Difano 2ml.l⁻¹ f-h, Organza 2ml.l⁻¹ f-h, Organza 2ml.l⁻¹ f-h, Organza 2ml.l⁻¹ f-h, Difano 1ml.l⁻¹ f-h, Organza 2ml.l⁻¹ f-h, Organza 1ml.l⁻¹ f-h, Organza 1ml.l⁻¹, respectively. The highest Ca contents of curd, leaf and root dry matters were 4425.6, 3327.7, and 2118 µg.g⁻¹, they were detected in Organza 2ml.l⁻¹ f-h, Difano 2ml.l⁻¹, Organza 0ml.l⁻¹, respectively. Application of nitrogenous fertilizers has been widely hailed as one of the most important advances in agricultural technology. The increases in both yield and

protein content of feed and food crops have been reassuring to those concerned with the prospect of feeding a continually increasing human and animal population, from a more-or-less static land base. There have been problems too, however, since the increased biomass produced by nitrogenous fertilization tends to dilute, and lower the plant levels of other essential nutrients, particularly the levels of essential minerals. In the case of selenium, this situation remedied through the addition of carefully controlled levels of selenium salts to the fertilizers. New York state workers added sodium selenite to fertilizers at levels of 2.24 and 4.48 kg/ha and found that these resulted in crop selenium contents of over 0.1ppm over a four year study, which was sufficient to protect animals fed the crops from selenium deficiency. The highest levels produced in the first year of the trial were less than those considered toxic (Cary and Allaway, 1973). This practice of selenium fertilization has reached the point of commercial usage in two countries, Finland (Koivistoinen and Huttunen, 1986) and New Zealand (Watkinson, 1983), where it has proven to be both effective and safe.

Table (2	7). Mineral a	accumulatio	ns respons	es to fulvic-	humic acid a	nd cultivar i	nteraction (*),	
	(0) Fu-H			(1) Fu-H			(2) Fu-H		
Se/cv	Calbres	Difano	Organz	Calbres	Difano	Organz	Calbres	Difano	Organz
	е		a	е		a	е		a
Zn/cur	193.13a	202.42a	201.66a	173.68a	185.50ac	190.58a	168.62b	166.93c	204.78
d	с	b	с	с		с	с		а
Zn/leaf	198.92a	178.77a	222.24a	188.82a	185.53a	206.69a	217.62a	183.84a	185.52
									а
Zn/root	154.14a	169.73a	137.57b	146.29a	152.52ab	150.68a	176.13a	152.40a	181.33
	b	b		b		b	b	b	а
Fe/cur	572.1a	452.2a	407.8a	599.4a	605.1a	335.3a	568.6a	317.1a	327.8a
d									
Fe/leaf	261.8a	270.1a	196.6a	237.5a	246.4a	326.3a	230.1a	296.7a	202a
Fe/root	291.73a	194.58a	243.81a	150.15a	209.38a	329.13a	204.71a	222.62a	283.11
									а
Ca/cur	4344.3a	4311.3a	3944.6a	3485.1a	2963.2a	3951.8a	4260a	3228.3a	4425.6
d									а
Ca/leaf	2463.9a	2993.2a	2542.2a	2809.7a	3260.4a	1786.2a	2126.9a	3327.7a	2211.7
									а
Ca/roo	1974.7a	1978.5a	2118a	1676.9a	1965.7a	1905.7a	1958.3a	2040a	2007.7
t									а
N/curd	3.21a	2.21a	2.91a	2.42a	2.65a	2.87a	2.40a	2.41a	2.58a
N/leaf	2.72a	3.16a	3.38a	2.97a	3.02a	2.42a	2.56a	2.67a	2.90a
N/root	2.74a	3.23a	3.15a	2.80a	2.58a	2.68a	2.79a	2.63a	2.82a
K/curd	27.63a	32.38a	32.62a	31.84a	32.77a	32.69a	29.97a	22.49a	30.90a
K/leaf	29.19a	29.27a	25.60a	28.56a	25.99a	27.24a	29.89a	30.36a	25.68a
K/root	29.27ab	32.23a	28.80ab	27.55ab	30.04ab	30.28ab	30.43ab	25.99b	29.01a
									b
Se/cur	2.04bc	4.52a	2.99ac	3.36ac	2.90ac	1.54c	2.64ac	3.25ac	3.67ab
d									
Se/leaf	4.40ac	3.93ac	3.06ac	3.58ac	3.33ac	5.28a	2.74bc	2.17c	4.84ab
Se/root	4.04a	4.12a	3.60a	3.41a	4.38a	3.36a	3.87a	3.64a	3.93a
(*): Figur	es of unsha	ared charact	ters are sigr	nificant at 0.	05 level, Dur	ncan test.			

G. Cultivar responses to Selenium and Fulvic-Humic acids

i. Cultivar growth in response to Selenium and Fulvic-Humic acids

Calbrese broccoli cultivar irrigated 1.5 mg.l⁻¹ Se and sprayed ml.l⁻¹ Fulvic-Humic acids manifested the highest curd fresh weight (224.83 g). The highest fresh weight of leaves (251.1g), leaf dry weigh (52.27g), leaf number (32.33), stem fresh weight (104.27 g), stem dry weight (27.3 g), root fresh weight (52.57 g), root dry weight (22.23 g), plant height (77.9 cm) and chlorophyll percentage (83.77) were detected in Difano irrigated with 1.5 mg.l⁻¹ Se and sprayed with 2ml.l⁻¹f-h, Organza irrigated with 1mg.l⁻¹ Se and sprayed with 1ml.l⁻¹f-h, Calbrese irrigated with 1.5 mg.l⁻¹ Se and sprayed with 0ml.l⁻¹f-h, Calbrese irrigated with 0.5 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, Calbrese irrigated with 0.5 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 1.5 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 1 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 0 ml.l⁻¹f-h, Calbrese irrigated with 0 ml.l⁻¹f-h, Difano irrigated with 0.5 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 0 ml.l⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, calbrese irrigated with 0 mg.l⁻¹ Se and sprayed with 1 ml.l⁻¹f-h, respectively, (Table, 28). Se added at appropriate levels (0.1 mg kg-1) can also delay senescence and promote the growth of ageing seedlings in lettuce (*Lactuca sativa*) (Xue *et al.* 2001). Large additions are toxic and may induce pro-oxidative reactions. In areas where soils are low in bioavailable Se, its deficiency can occur. It is toxic at high concentrations due to incorporation of Se in place of sulphur in amino acids, with subsequent alteration of protein three-dimensional structure and impairment of

enzymatic function (Amweg *et al.* 2003). Both humic substances and soil minerals are important soil components from the standpoint of interaction with organic and inorganic contaminants. Sorption of tetracyclines to humic substances and soil minerals involves diverse mechanisms that respond differently to solution chemistry. For example, cation exchange (Gu *et al.*, 2007), cation bridging (MacKay and Canterbury, 2005), and hydrogen bonding (Sithole and Guy, 1987b) have been proposed for the association of tetracycline with humic substances. Consequently, the interaction of several antibiotics, including tetracycline, with humic substances significantly underestimated by considering only the hydrophobic partitioning mechanism (Tolls, 2001). Similarly, the role of cation exchange and surface complexation during the sorption of tetracyclines to clay (Porubcan *et al.*, 1978; Sithole and Guy, 1987a; Figueroa *et al.*, 2004) and oxide minerals (Figueroa and MacKay, 2005; Gu and Karthikeyan, 2005a) has been highlighted as well. Since the soil minerals have a strong affinity for humic substances, humic-mineral complexes are likely to form and exert a strong influence on the reactivity of antibiotics. Cegarra *et al.* (1987) who established a direct relation with humification and consequent increase in the functional groups and CEC. These findings lent support to the increase of CEC by HA application in the present study. The incubation experiment highlighted that, the response of humic acid observed up to 40 kg ha⁻¹ for increasing nutrient availability in Alfisol. To confirm this result in the presence of crop a pot experiment conducted with rice crop.

Tab	le (28). (Growth resp	ponses of cu	Itivars to S	Se and F-I	I triple inte	eractions						
Se/F	Fu-H/ Cv	'S	Lfwt	ldwt	Lno	sfwt	sdwt	rfwt	rdwt	Cfwt	cdwt	plh	Chol
Se 0	Fu-H	Calbres e	133.57с е	27.83a d	18g	74.53a d	16.37a f	31.9ah	15.83a g	185.33a d	36.67a d	58.50b g	69.3ag
(mg.l	(0)	Difano	141be	24.7bd	20fg	74.73a d	16.6af	30.9ah	15.13a g	145.67a f	31.77a d	55.47c g	46.93h
1)		Organz a	135.93c e	36.83a d	24.67a g	85.97a d	19.4ae	50.8a	17.4ag	168.90а е	28.3ad	60.33b g	65.77bg
	Fu-H 1	Calbres e	162.7ae	37.13a d	23bg	95.33a с	21.17a e	46.53a d	22.23a	152.73a f	38.37a c	61.83a g	83.77a
		Difano	117.63c e	35.9ad	23bg	74.8ad	18.17a f	26.73b h	9.77eg	186.37a d	34.57a d	57.47b g	52.07gh
		Organz a	101.7de	22.13c d	20fg	76ad	18.23a f	25.8ch	10.97c g	123.4bf	20cd	47.47c g	75.07ac
	Fu-H 2	Calbres e	120.27c e	17.33d	21.67c g	63.47b e	15.73b f	30.5ah	15.6ag	122.27b f	27.33a d	46.53g	59.43ch
		Difano	119.77.c e	36.63a d	23bg	97.8ac	19.93а е	19.2h	10.53d g	117.8cf	30.4ad	66.8ae	65.93bg
		Organz a	121.47c e	29.2ad	24bg	93.2ac	22.2ac	23.87d h	9.3fg	130.7af	33.1ad	65.77a e	57.67dh
Se 0.	Fu-H	Calbres e	118.83c e	30.1ad	25ag	88.87a d	19.17a e	30ah	9.37fg	180.7cf	20.67c d	70.73а с	78.1ab
5 (mg	0	Difano	167.97а е	35.27a d	28.33a e	97.67а с	24.33a b	45.23а е	15.57a g	140.17a f	28.77a d	69.07a d	61.633b h
.l ⁻¹)		Organz a	148.13b e	36ad	28af	79.53a d	14.07b f	20.8gh	10.97c g	206.27а с	36.37a d	68.57a d	55.5eh
	Fu-H 1	Calbres e	95.4de	26.63a d	24bg	52.57d e	11.7cf	46.13a d	15ag	131.57a f	18.9cd	59.63b g	67.43ag
		Difano	237.83a b	47.83а с	29.33а с	70.8ae	27.3a	47.87а с	20.7ad	110.57c f	29.87a d	77.9a	61.27bh
		Organz a	156.67а е	43.96a d	26.33a f	64.57a e	14.03b f	33.4ah	11.23b g	67.8f	16.23d	70.93а с	71.73ae
	Fu-H 2	Calbres e	151.2be	26.83a d	25.33a g	71.1ae	14.73b f	47.13а с	12.73a g	119.7cf	21.53c d	57.53b g	74.63ad
		Difano	139.5be	36.57a d	24.33a g	93.63а с	16.07a f	49.69b	15.33a g	119.83c f	28.83a d	62.7ag	57.13eh
		Organz a	125.87c e	37.3ad	24.67a g	91.3ad	15.33b f	26.87b h	10.03e g	84.5ef	19.2cd	64.3af	54.07fh
Se 1	Fu-H 0	Calbres e	133.57c e	37.17a d	26.67a f	78.37a d	21.43a d	48.67а с	21.6ab	219.67a b	45.73g	69.97a d	62.53bh
(mg.l ⁻		Difano	149.77b e	37.1ad	26.33b f	33.07e	9.8df	22.03f h	9.6fg	115.37c f	20.27c d	62.67a g	60.37ch
1)		Organz a	86.3e	28.3ad	20.33e g	64ae	17.73a f	22.53e h	7.83g	125.23b f	33.77a d	50.73e g	64.43bg
	Fu-H 1	Calbres e	122.77c e	38.53a d	25.33a g	73.22a d	17.70a f	42.37a g	21.27a c	104.77d f	20.97c d	58.77b g	68.4ag

		Difano	100.07d e	36.93a d	24.67a g	103.77 a	14.7bf	47.53а с	19.27a f	111.27c f	22.93c d	55.17c g	54.77eh
		Organz a	178.73а е	52.27a	30.33a b	98.53a b	18.73а е	52.57a	22.2a	150af	33.33a d	70.37a d	67.97ag
	Fu-H 2	Calbres e	129.10c e	40.63a d	27af	61.47b	12.87b f	39.43a h	18.57a f	90.4df	28.1ad	64.93a e	64.63bg
		Difano	118.50c e	35.17a d	23bg	57.8ce	10.13cf	35.07a h	13.9ag	134.90a f	22.93c d	55cg	58.87ch
		Organz a	140.06b e	30.67a d	25.67a g	76.50a d	12.83cf	32.03a h	13ag	99.30df	26.47a d	61.03a g	68.93ag
Se 1.	Fu-H	Calbres e	194ad	40.27a d	32.33a	76.77a d	12.13cf	36.57a h	17.37a g	128.67a f	28.87a d	72.83a b	70.93af
5 (mg	0	Difano	149.8be	43.87a d	29.67a c	85.4ad	14.07b f	36.17a h	15ag	104.7df	20.43c d	69.50a e	55.67eh
ı.l ⁻¹)		Organz a	174.47а е	40.8ad	28.67a d	57.83c e	7.1f	34.6ah	11.93a g	95.90df	20cd	68.37a d	71.43af
	Fu-H	Calbres e	218ac	43.53a d	28af	104.27 a	15.23b f	50.27a	20.7ae	224.83a	42.53a b	74.60a b	68.23ag
		Difano	127.9ce	38.7ad	23.67b g	89.8ad	14.77b f	46.7ad	19.2af	101.23d f	25.97a d	53.40d g	52.43gh
		Organz a	142.13b e	46.43а с	21dg	87.63a d	14.7bf	44.07a f	17.6ag	180cf	20.50c d	62ag	60.87bh
	Fu-H 2	Calbres e	208.13a d	50.4ab	21.67c g	72.43a d	13.9bf	47.4ac	16.27a g	131.57a f	20cd	59.2bg	65.87bg
		Difano	251.10a	48.43а с	22cg	63.37a d	13.23b f	47.73a с	14.1ag	149.6af	18.63c d	63.53a g	58.30ch
		Organz a	132.02c e	33.73a d	20.67d g	72.60a d	15.27b f	42.43a g	18.03a g	124.47b f	17.27c d	57.8bg	63.90bh
(*):1	fwt=leaf	fresh weght	t (g); ldwt=le	af dry weig	ht (g); Ino=	leaf numbe	er per plant	t; sfwt stem	n fresh weig	ght (g); sdfw	t=stem dry	weight (g)	; rfwt=root

(*):Ifwt=leaf fresh weight (g); Idwt=leaf dry weight (g); Ino=leaf number per plant; stwt stem fresh weight (g); sdfwt=stem dry weight (g); rfwt=root fresh weight (g); rdwt=root dry weight (g); cfwt=curd fresh weight (g); cdwt=curd dry weight (g); plh=plant height (cm); chol= Chlorophyll percentage out of other pigments. (**): Figures of unshared characters are significant at 0.05 level, Duncan test.

ii. Hormonal homeostasis in response to Selenium and Fulvic-humic acids

The highest free (6768.7 µg.g⁻¹), bounded (6766.7 µg.g⁻¹) and total (11144.5 µg.g⁻¹) GA₃ were recorded with Difano cauliflower cultivar irrigated with 0mg.I-1Se sprayed with 2mg.g-1f-h, Calbrese irrigated with 1.5mg.I-1 Se sprayed with 1 mg.g⁻¹f-h, and Difano irrigated with 1mg.l⁻¹ Se sprayed with 2mg.g⁻¹f-h, respectively. The highest free (3177.7 µg.g⁻¹ 1), bounded (2759.1 µg.g⁻¹) and total (5015.2µg.g⁻¹) Zeatin were recorded with Organza cauliflower cultivar irrigated with 0.5 mg.I⁻¹Se sprayed with 2mg.g⁻¹f-h, Difano irrigated with 0 mg.I⁻¹ Se sprayed with 2 mg.g⁻¹f-h and Organza irrigated with 0.5mg.l⁻¹ Se sprayed with 1 mg.g⁻¹f-h, respectively. The highest free (3851.7 µg.g⁻¹), bounded (2019.3 μg.g⁻¹) and total (2478.7 μg.g⁻¹) ABA were recorded with Calbrese cultivar irrigated with 1 mg.l⁻¹Se sprayed with 2mg.g⁻¹f-h, Calbrese irrigated with 0 mg.l⁻¹ Se sprayed with 2 mg.g⁻¹f-h and Calbrese irrigated with 0 mg.l⁻¹ Se sprayed with 2 mg.g⁻¹f-h, respectively. The highest free (1923.1 µg.g⁻¹), IAA bounded (1892.7 µg.g⁻¹) and total (2208.5 µg.g⁻¹) 1) IAA were recorded with organza cauliflower cultivar irrigated with 1mg.l⁻¹Se sprayed with 1mg.g⁻¹f-h, Difano irrigated with 1mg.I⁻¹ Se sprayed with 2mg.g⁻¹f-h, and Difano irrigated with 1mg.I⁻¹ Se sprayed with 2mg.g⁻¹f-h, respectively, (Table, 29). However, the positive effect of Se observed in non-stressed plants and in the early growth period. The lack of functional significance of antioxidative capacity of plants in growth response suggests that the cause of growth stimulatory effect of Se supplementation most likely lies in the other mechanisms, for example in the availability of reduced cell metabolites or changes of lignification and of auxin catabolism. Such mechanisms suggested to be involved in the tolerance to metal toxicity (Chaoui and El Ferjani 2005). Fulvic-humic acids also recruits the positive effects on Difano cauliflower cultivars through boosting growth of plants, and hence dual positive actions are combined. Humic acid, the main fraction of soil organic matter is a vital factor for maintenance of soil fertility.

The nitrogen availability was increased with increasing doses of HA (80 kg ha⁻¹) and till 60 days after incubation (DAI). The significant increase was observed at 20kg HA ha⁻¹ and beyond that level, any further increase in HA exhibited a decrease in the increasing period. The decrease in the increment of available N at HA levels higher than 20kg.ha⁻¹ might be due to reduced microbial activity in the presence of some high content of phenolic produced by HA in the soil (Bama *et al.*, 2003). The increase in available N attributed to the N contributed from the native N by the enhanced microbial activities induced by the humic acid (Deepa, 2001). Similar increase in N availability were confirmed by the application of HA at 50 kg ha⁻¹ (Govindasamy *et al.*, 1989).The released HA from the added tree leaves was very effective (Prasad *et al.*, 1991). A linear trend in P availability was observed for graded doses of HA

till the end of incubation period. However, the increase was marked for 40 kg ha⁻¹ and up to 60 DAI. Beyond that level, the magnitude of increase reduced. The increase in the availability of P attributed to the chemical and biochemical processes involved. The humic acids might have helped in solubilizing P from insoluble to soluble form resulting in its increase (Bama *et al.*, 2003). Similar increase reported for the application of metal humate up to 50 ppm (Khan *et al.*, 1997).

Table	Table (29). Hormonal homeostasis responses of cultivars to Se and F-H triple interactions													
Se//F	u-H/ (Cvs	IAA- F	IAA-B	AAA-T	GA3- F	GA3-B	GA3-T	ABA- F	ABA- B	ABA- T	Z-F	Z-B	Z-T
Se/Fu	ı-H/ C	Cvs	IAA-F	IAA-B	AAA-T	GA3- F	GA3-B	GA3-T	ABA- F	ABA- B	ABA- T	Z-F	Z-B	Z-T
Se (Fu-H	Calbre	265.9 b	308.7 b	574.6a	5241. 3ac	2197.2b	7438.5 ad	474.6 b	1031. 7b	1506. 3b	2469 ac	1226.3 ab	3695.3
) (n) H	Difano	172.8	173.6	346.4b	2505.	2375bd	4880.4	440.6	565.6	1006.	1760.7	1573.9	3334.6
۱g.I	3		b	b	C	4ad		bf	b	b	3b	ac	ab	ac
-1)		Organ	176.5	167.1	343.6b	1594.	2349.2b	3943.5	329.9	598.7	928.6	2224.3	1998.9	4223.2
		za	b	b	С	3bd	d	cf	b	b	b	ac	ab	ac
	, È	Calbre	315.6	179.6	495.2a	4065.	1492.8b	5558.3	1017.	489.8	1507.	2340.2	968.7a	3308.9
	Ξ	se	b	b	C	5ad	d	af	8b	b	6b	ac	b	ac
		Difano	118.9	125.4	244.3c	1526.	1632bd	3158.5	160.5	426.1	586.6	1258.5	1760.7	3019.2
		Organ	D 149.6	D 1741	200 7h	2044	2205 /h	01 5274.4	D 400.1	D 506.0	D 1006b	ac	ap 20445	ac 2521.4
		organ za	140.0 h	174.1 b	522.70	5044. 5ad	2303.40 d	5574.4 af	499.1 b	500.9 h	10000	14/7.4 ac	2044a h	3021.4 ac
	μ	Calbre	157.9	205.2	363.2h	4088	1936.9b	6025.1	459.4	2019	2478	2159.9	1290.7	3450.6
	÷	se	b	b	C	2ad	d	af	b	3a	7a	ac	ab	ac
		Difano	169.8	157.9	327.7b	6768.	3014.8b	9783.5	958.8	449.4	1408.	1535.3	2759.1	4294.4
			b	b	С	7a	d	ac	b	b	2b	ac	а	ac
		Organ	153.6	182.1	335.7b	2950.	2221.4b	5172.3	465.5	593.9	1059.	1342.1	1432.3	2774.4
	_	za	b	b	С	9ad	d	af	b	b	4b	ac	ab	ac
Se	Ļ	Calbre	214b	146.2	360.2b	2798.	2930.8b	5729.4	396.4	570.8	967.2	2140.6	1264.9	3405.5
0.5	H	Se	400.0			6ad	d acoa ah	at	D	D	D	ac	ab	ac
(n	0	Difano	139.6 h	147.4	287.0D	3236. 62d	2692.30 d	5928.9 of	315.7	344.5 b	660.2	1/6/.2	2121.3	3888.5
۱g.l		Organ	208.0	U 172.1	171 0a	5040	u 2126.0h	ai 7176.5	0 1002h	U 182.1	0 157/b	ac 2456 1	aD 1651 3	4107 A
-1)		7a	230.3 b	b	c 471.0a	6ad	d	7170.5 ae	10320	402.1 b	13740	2400.1 ac	ab	ac
-	Ľ,	Calbre	~ 318.4	297.9	616.3a	4963.	4792.8a	9756.2	795.2	~ 1023.	1819b		1883a	
	Ŧ	se	b	b	С	4ad	b	av	b	8b		2308ac	b	4191ac
		Difano	131.3	136.8	268.0c	2517.	2278.3b	4796bf	449.6	455.5	905.1	1889.5	1780a	3669.5
			b	b		7ad	d		b	b	b	ac	b	ac
		Organ	200.9	126.6	326.1b	1634.	1125.2b	2760f	1156.	266.2	1422.	3003.4	2011.8	5015.2
	<u>л</u> п	za	b	b	C	8bd	d	0540.5	3b	b	5b	ab	ab	a
	, -	Calbre	220.8 h	129.8	350.60	1600. 96d	1941.7D	3542.5 df	825.9 b	3/3.5	1199. 45	1638.4	1863.7	3502.1
	Т	Difano	D 201.1	D 140.2	0 3/1 3h	000 102.6	u 225.3d	117 Of	140.5	D 261.5	40	2681 /	aD 1702.8	4384 2
		Dilano	201.1 h	h	C 041.50	d	225.50	417.31	h	201.5 h	402.1 b	2001.4 ac	ah	4004.2 ac
		Organ	~ 166.3	139.6	306.0b	195.9	194.3d	390.3f	185.2	247.1	432.2		1586.9	4763.9
		za	b	b	С	d			b	b	b	3177a	ab	ac
Se	۶ Fu	Calbre	205.7	158.3	364.0b	198.1	189.4d	387.5f	182.9	224.7	407.6	2327.3	1619a	3946.3
_	Τ	se	b	b	С	d			b	b	b	ac	b	ac
(m		Difano	179.1	332.0	511.1a	2218.	1763.9b	3982.6	472b	272b	744b	1316.4	1561.1	2877.5
g.I <u>-</u>		<u> </u>	b	b	C	6ad	d	cf	0001	504.0	1110	ac	ab	ac
\smile		Organ	198.7 h	155.7	354.4b	3018. Zod	1815.8b	4834.5	6080	534.6	1142. ch	1599.7	1258.5	2858.2
-	ΥΠ.	Za	D 266.0	1910	0006.2	180	U 1520.1b	DI 6000 2	026.7	D 720.0	1676	ac 1502.2	ab 1470.0	2064.2
	Ч. Т	Se	200.9 h	1019. 5a	2000.3 ah	4000. 3ad	d	0000.3 af	930.7 b	739.9 h	1070. 6h	1093.3 ac	1470.9 ah	3004.2 ac
	-	Difano	186.1	200.7	386.8b	1518	2178.5b	3696.8	580.2	388.5	968.6	1902.4	2539.8	4442.2
		Dirano	b	b	C	2cd	d	cf	b	b	b	ac	ab	ac
		Organ	1923.	126.2	2049.3	4320.	1992.5b	6312.7	996.3	316.7	1312.	1155.4	2089.1	3244.5
		za	1a	b	ac	2ad	d	af	b	b	9b	ac	ab	ac
	Ч. Ч.	Calbre	215.4	318.8	534.2a	4330.	1856.1b	6186.2	3851.	194.1	4045.			1285.7
	τ	se	b	b	С	1ad	d	af	7a	b	8b		736.9b	С
	Т		1	1	1	1	1	1	1	1	1	548 8c	1	1
		D.(045.0	1000	0000 5	0.465	1055 1		546 1	050.0		010.00		0007.0
		Difano	315.8	1892.	2208.5	6489.	4655.1a	11144.	518.4	256.8	775.1	1747.0	1477 4	3225.2

r	1	-	1	I										
		Organ	213.6	396.3	609.8a	5086.	1317.4b	6403.4	289.9	495.3	785.1	910.8b	1979.6	3225.2
		za	b	b	С	0ad	d	af	b	b	b	С	ab	ac
Se	Fu	Calbre	297.9	388.9	686.7a	2434.	4668.3a	7103.2	304b	359.3	663.4	910.8b	1258.5	2890.4
<u> </u>	÷	se	b	b	с	9ad	b	ae		b	b	с	ab	bc
5	0	Difano	413.3	296.3	709.6a	4665.	2225.4b	6890.8	754.9	254.5	1009.	2024.7	1966.8	
ЭШ			b	b	с	4ad	d	ae	b	b	4b	ac	ab	2169ac
9 .		Organ	357.0	306.8	663.8a	3299.	4495ac	7794.8	491.7	535.9	1027.	1619.1	1747.8	3991.5
<u> </u>		za	b	b	с	8ad		ad	b	b	6b	ac	ab	ac
	Fu 1	Calbre	451.2	526.4	977.6a	3778.	6766.7a	10545.	389.2	502b	891.2	1522.5		3366.9
	÷	se	b	b	с	4ad		1ab	b		b	ac	704.7b	ac
		Difano	334.7	530.5	865.2a	3527.	1679.9b	5207.7	401.7	405b	806.7	2417.5	1908.8	2227.2
			b	b	с	8ad	d	af	b		b	ac	ab	ac
		Organ	471.5	429.7	901.3a	2902.	1622.8b	4525.3	369b	441.4	810.4	2546.3		4326.3
		za	b	b	с	6ad	d	bf		b	b	ac	672b	ac
	Fu 2	Calbre	426.1	265.1	691.2a	3135.	3275.1a	6410.1	340.8	476.8	817.6		1342.2	3218.3
	÷	se	b	b	с	1ad	d	af	b	b	b	2205ac	ab	ac
		Difano	331.2	412.0	743.1a	530.1	631.2cd	1161.3	302.3	605.4	907.7		1908.8	3547.2
			b	b	с	cd		ef	b	b	b	1941ac	ab	ac
		Organ	307.1	518.6	825.7a	1986.	520.3d	2506.4	379.2	230.2	609.4	1464.5	1045.9	3849.8
		za	b	b	с	2ad		df	b	b	b	ac	ab	ac
(*): [Figures	s of unsha	red chara	cteristics a	are signific	ant at 0.0	5 level Dun	can test.						

iii. Stomata behaviour of cultivars in response to Selenium and Fulvic-Humic acids

The highest stomata length at the upper leaf surface (11.85 micron), stomata width (9.63 micron), the lengthiest stomata aperture (7.4 micron), the widest width (5.18 micron). The lowest stomata population (1091.1 mm⁻²) recorded in Organza irrigated with 0mg.I⁻¹ Se and sprayed with 2ml.I⁻¹f-h, Calbrese irrigated with 0mg.I⁻¹ Se and sprayed with 2ml.I⁻¹f-h, Calbrese irrigated with 1.5 mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Organza irrigated with 0mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 1.5 mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, respectively, (Table, 30). The highest stomata length at the lower leaf surface (12.22 micron), stomata width (9.26 micron), the lengthiest stomata aperture (7.78 micron), the widest width (4.81 micron). Whereas, the lowest stomata population (1065.3 mm⁻²) were recorded in Calbrese irrigated with 0mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0 mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0 mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0 mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0 mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0 mg.I⁻¹ Se and sprayed with 0 ml.I⁻¹f-h, Calbrese irrigated with 0 mg.I⁻¹ Se and sprayed with 0 mg.I⁻¹ Se and sprayed with 1 ml.I⁻¹f-h, respectively. Cultivation of plants enriched with Se could be an effective way of producing Se-rich foodstuffs, with benefits to health (Ip and Lisk 1994; Lyons *et al.* 2005a). Environmental toxicity of Se in animals and humans is rare. In horses and cattle ingestion of plants containing over 5 but usually less than 50 mg

The beneficial effects of Se are dependent on the chemical form, selenomethionine (SeMet, H₃N+CH (COO⁻) CH2CH2SeCH3) being the most readily assimilated form (Patrick 2004). Duffield-Lillico *et al.* (2003) reported that supplementation of the human diet with selenium yeast, containing SeMet as the main chemical form, significantly reduced the occurrence of prostate cancer. However, Peters *et al.* (2007) reported that greater prediagnostic serum Se concentrations were not associated with prostate cancer risk, although greater concentrations were associated with reduced prostate cancer risk in men who reported a high intake of vitamin E, in multivitamin users, and in smokers. David *et al.* (1994) found that, humus would form protective coating over sesqui oxides and thereby reducing the fixation of any phosphate, which made them available in the soil. The increase in available P might also be due to the mineralization of soil organic P (Dusberg *et al.* 1989) as well as humic acid (Vaughan and Ord, 1985). Thangavelu and Manickam (1989) reported that, the P availability increased with application of manure due to less fixation and release of P by humic substances released during mineralization of organic matter. These results lent support to the finding of increased P availability due to HA noticed in the present study.

Tabl	Table (30). Stomata behaviour responses of cultivars to Se and F-H triple interactions (*); (**)											
			Stomata	dimension	s of upper l)	Stomata dimensions of upper leaf surface					
Se/Fu-H/ Cvs			stl	stw	stal	stawl	St Popul.	stl	stw	stal	stawl	St Popul.
Se 0	Fu-H	Calbres e	11.48a b	9.63a	7.41a	3.70ac	1091.1 b	12.22a	9.26a	7.78a	4.81 a	1151.2bd
(mg.l ⁻¹)	(0)	Difano	11.48a b	9.26a b	6.30ab	3.70ac	1348.8 b	9.99ab	7.41ab	5.93a c	3.33 a	1168.4bd
		Organz a	9.63ad	7.78a e	4.82b	2.59bc	1134b	10.37ab	7.78ab	5.56a c	2.96 a	1314.4ad

	Fu-H	Calbres e	9.26ad	6.30c e	4.44b	2.59bc	1237.1 b	9.99ab	7.41ab	4.81a c	3.70 a	1254.3ad
		Difano	8.15d	6.30c e	3.70b	2.59bc	1374.6 b	10.74ab	8.52ab	5.19a c	2.59 a	1177bd
		Organz a	9.26ad	6.67b e	4.44b	2.59bc	1091.1 b	11.11ab	8.15ab	6.67а с	3.70 a	1237.1bd
	Fu-H 2	Calbres e	9.63ad	7.78a e	4.81b	3.33ac	1348.8 b	10.37ab	7.41ab	4.81a c	3.33 a	1211.3bd
		Difano	9.99ad	7.78a e	5.93ab	3.70ac	1211.3 b	10.74ab	7.78ab	5.93a c	2.96 a	1288.7
		Organz a	11.85a	8.89a c	5.93ab	4.44ac	1254.3 b	10.37ab	7.41ab	4.44b c	2.59 a	1254.3ad
Se 0	Fu-H	Calbres e	10.74a d	8.52a d	5.56ab	4.07ac	1254.3 b	10.74ab	7.78ab	5.19a c	2.59 a	1116.8cd
.5 (mį	0	Difano	11.48a b	7.41a e	4.81b	3.70ac	1108.2 b	10.37ab	7.41ab	5.93a c	3.70 a	1219.9bd
g.I ⁻¹)		Organz a	8.89bd	5.93d e	3.70b	2.22c	1348.8 b	11.11ab	8.89ab	5.93a c	4.44 a	1065.3d
	Fu-F	Calbres	9.26ad	6.67b e	4.81b	2.96ac	2 1288.7 b	9.48b	7.04ab	4.81a c	2.96 a	1288.7ad
	-	Difano	8.89bd	6.30c	3.70b	2.59bc	1297.3 b	9.26b	8.15ab	5.56a	4.07 a	1065.3d
		Organz	8.89bd	6.67b	4.81b	2.59bc		9.99ab	7.78ab	4.07c	2.96 a	1202.7bd
	Fu-F 2	Calbres	8.89bd	6.30c	4.07b	2.96ac		9.26b	6.67ab	4.07c	2.59 a	1211.3bd
	-	Difano	10.37a d	6.67b	4.44b	3.33ac	2 1134b	11.11ab	8.15ab	5.93a	4.44 a	1108.2cd
		Organz	8.15d	5.56e	4.07b	2.96ac	1348.8 b	10.37ab	8.52ab	5.19a	2.96 a	1348.8ad
Se 1	Fu-F 0	Calbres	8.89bd	6.30c	4.44b	2.96ac	1417.5	10.74ab	8.15ab	6.67a	4.44 a	1177bd
(mg.	-	Difano	10.74a	7.78a	4.81b	3.33ac	1254.3 b	10.37ab	8.15ab	6.30a	3.33 a	1177bd
I-1)		Organz	9.26ad	6.30c	4.07b	2.59bc	1245.7	9.99ab	6.67ab	4.81a	2.96	1288.7ad
	1 Fu-F	Calbres	8.89bd	6.67b	4.44b	2.96ac	1357.4	9.63b	6.67ab	4.44b	3.33	1219.9bd
	-	Difano	11.11a	8.89a	6.30ab	4.81ab	1108.2	9.63b	7.41ab	5.93a	4.07	1314.4ad
		Organz	10.74a	7.04a	5.56ab	4.07ac	1262.9	10.37ab	7.78ab	5.19a	a 2.96	1142.6bd
	Fu-l 2	Calbres	0 10.74a	e 7.78a	5.93ab	4.07ac	D 1211.3	9.63b	7.04ab	5.56a	a 4.44	1262.9ad
	Т	e Difano	0 11.48a	e 8.89a	6.30ab	4.81ab	D 1211.3	9.99ab	7.04ab	с 5.19а	a 3.33	1262.9ad
		Organz	р 9.63ad	с 7.04а	5.56ab	4.44ac	D 1383.2	9.63b	6.30b	c 4.44b	a 3.33	1408.9ab
Se	Fu-	a Calbres	9.99ad	e 7.78a	4.81b	3.33ac	р 1177b	9.99ab	7.04ab	c 4.81a	a 2.59	1305.8ad
1.5 (n	НO	e Difano	8.52cd	e 5.93d	4.44b	3.33ac	1323b	9.63b	7.04ab	с 4.81а	a 3.33	1159.8bd
ıg.l ⁻¹)		Organz	9.63ad	е 7.41а	5.93ab	3.70ac	4837.3	9.99ab	8.15ab	с 5.93а	a 4.44	1262.9ad
	1 Fu	a Calbres	11.11a	е 8.15а	6.30ab	3.70ac	a 1134b	10.74ab	8.89ab	с 7.04а	a 4.81	1177bd
	Т	e Difano	с 11.85а	e 8.89a	6.30ab	4.81ab	1211.3	10.37ab	7.78ab	с 5.93а	a 4.44	1271.5ad
		Organz	10.74a	с 8.15а	5.93ab	5.18a	b 1142.6	10.37ab	7.78ab	с 5.56а	a 2.96	1340.2ad
	2 Fu-	a Calbres	d 8.89bd	e 5.56e	4.07b	2.96ac	b 1366b	11.11ab	8.52ab	с 6.30а	a 4.81	1374.6ac
	Ì	e Difano	11.11a	7.78a	5.56ab	4.44ac	1151.2	11.11ab	9.26a	с 7.41а	a 4.44	1228.5bd
		Organz	c 9.26ad	e 5.56e	4 07h	2 59hc	b 1331.6	8 89h	6.67ab	b 4.81a	a 2.59	1529.22
(**) p	opup = st	a omata popu	lation at up	per leaf su	urface; popl	o = stomat	b a populatior	at lower lea	af surface; s	c stlup = stor	a nata lenç	th at upper

leaf surface; stalup = stomata length at upper leaf surface; popio = stomata population at lower leaf surface; stalup = stomata length at upper leaf surface; stalup = stomata length at lower leaf surface; stalup = stomata width at lower leaf surface; stalup = stomata length at lower leaf surface; stalup = stomata width at lower leaf surface; stalup = stomata surface; stalup = stomata width at lower leaf surface; stalup = stomata surface; stalup = s

iv. Mineral accumulations in cultivar leaves in responses to Selenium and Fulvic-Humic acids

The highest Nitrogen contents of curd, leaf and root dry matters were 4.17, 4.85 and 4.31%, they were detected in Calbrese irrigated by 0 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, Difano irrigated by 0 mg.l⁻¹ Se sprayed with 1 ml.l⁻¹ f-h, Organza irrigated by 0 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, respectively. The highest Potassium contents of curd, leaf and root dry matters were 57.39, 36.82 and 36.82 µg.g⁻¹, they were detected in Difano irrigated by 0.5 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, Calbrese irrigated by 0.5 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, Calbrese irrigated by 1.5 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, respectively. The highest Zinc contents of curd, leaf and root dry matters were 248.03, 340.9 and 216.4 µg.g⁻¹, they were detected in Organza irrigated by 1 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, Calbrese irrigated by 0.5 mg.l⁻¹ Se sprayed with 2 ml.l⁻¹ f-h, Calbrese irrigated by 0.5 mg.l⁻¹ Se sprayed with 2 ml.l⁻¹ f-h, respectively. The highest Iron contents of curd, leaf and root dry matters were 1210, 567.6 and 662.5 µg.g⁻¹, they were detected in Calbrese irrigated by 1.5 mg.l⁻¹ Se sprayed with 2 ml.l⁻¹ f-h, Organza irrigated by 0 mg.l⁻¹ Se sprayed with 1 ml.l⁻¹ f-h, Organza irrigated by 1.5 mg.l⁻¹ Se sprayed with 1 ml.l⁻¹ f-h, respectively. The highest Calcium contents of curd, leaf and root dry matters were 7576, 4444 and 3909.3 µg.g⁻¹, they were detected in Calbrese irrigated by 0 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, Difano irrigated by 0 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, Calbrese irrigated by 1.5 mg.l⁻¹ Se sprayed with 2 ml.l⁻¹ f-h, respectively. The highest Selenium contents of curd, leaf and root dry matters (Table, 31; 32) were 6.69, 8.69 and 7.68 µg.g⁻¹, they were detected in Difano irrigated by 1 mg.l⁻¹ Se sprayed with 0 ml.l⁻¹ f-h, Calbrese irrigated by 1 mg.l⁻¹ Se sprayed with 0ml.l⁻¹ f-h, Calbrese irrigated by 0.5 mg.l⁻¹ Se sprayed with 2 ml.l⁻¹ f-h, respectively. The toxicity of lead (Pb) to animals reduced by the presence of other minerals, especially calcium (Ca) in the diet (Washington DC, 1980). Schrauzer et al., (1981) showed that lead (5 and 25 ppm) as the acetate antagonizes selenium (1 ppm) in the organic forms in which it occurs normally in foods; low levels of lead (5 ppm) in this case produced high mortality among female mice thus exposed. The following study initiated to determine whether a high, but not lethal, level of dietary selenite was protective against Pb toxicosis in domestic sheep. These results provided evidence that this level of selenite-Se increased rather than decreased Pb toxicosis in sheep under the experimental conditions employed. Nevertheless, humic substances can capture a certain amount of available metals in sediment. In particular, metals captured by humic acids, which are not soluble in water, definitively subtracted from the environment (Hedges, 1992). Bound humic substances may influence mineral reactivity by altering the type and charge on surface functional groups as well as the available sorption sites. Meanwhile, mineral-bound humic substances can also undergo physiochemical and conformational changes (Kretzschmar et al., 1997; Chorover et al., 1999; Li et al., 2003; Wang and Xing, 2005; Yoon et al., 2005) leading to altered surface properties. Thus, the sorption characteristics of both the minerals and humic substances modified due to the formation of humic-mineral complexes. The amount of metals strongly bound to humic acids showed the following order: Cu >> Zn >> Co> As> Z Mn. The fraction of Cu, Zn and As bound to humic acid (μ g g⁻¹ of HA) increases in the first 10-12 cm of cores, then a decrease is observed. This observation could be related both to the presence of a mobile fraction of metals in sediments successively bound to humic acids and to different structural features showed by humic acids along the cores, due to transformation processes (Calace et al., 2005).

Table	Fable (31). Mineral accumulations responses of cultivars to Se and F-H triple interactions (*)												
Se/F	u-H/Cvs		Zn C	Zn L	Zn R	Fe C	Fe L	Fe R	Ca/ C	Ca L	Ca R		
Se	(0)	Calbrese	166.93be	200.73bc	180.47ae	1112.6ab	362.6a	342.6ab	7576a	3182ab	1715.7bi		
Õ	Ξ	Difano	200.73ad	173.70bc	193.97ac	478.9ab	449.3a	354.5ab	5983ab	4444a	1480.5ci		
(m		Organza	211.23ac	340.90a	180.47ae	455.2ab	256a	241.1ab	3922ac	3802ab	1933.7bi		
g.l-	Fu 1	Calbrese	180.47ae	173.67bc	187.23ad	650.6ab	395.9a	188.6b	2742bc	2682ab	1587.2bi		
1)	÷	Difano	193.97ad	180.47bc	193.97ac	757.2ab	105.7a	277.5ab	4174ac	3884ab	2895.6ae		
		Organza	207.47ad	187.23bc	180.47ae	508.5ab	567.6a	259.7ab	3922ac	3054ab	1732.1bi		
	Fu 2	Calbrese	180.47ae	166.93bc	187.23ad	324.9ab	99.8a	353.6ab	4085ac	2481ab	1783.9bi		
	Ŧ	Difano	146.63be	173.70bc	173.67af	295.2ab	313a	147.2b	2746bc	4038ab	1522.9ci		
		Organza	193.97ad	180.47bc	187.20ad	585.5ab	277.6a	244.2b	4517ac	2135ab	1740.9bi		
Se	Fu	Calbrese	200.73ad	200.73bc	82g	363.7ab	283.4a	147.2b	3738ac	2703ab	2405.9ah		
0.	-H 0	Difano	221ab	153.40c	103.80ef	544.1ab	372.3a	230.1b	4221ac	2370ab	1830.7bi		
5 (Organza	180.47ae	187.20bc	73.57g	336.7ab	93.9a	311.7ab	3037bc	2545ab	2226.3bi		
mg	Fu 1	Calbrese	173.70ae	180.43bc	100.17ef	721.7ab	165a	159b	3525bc	2930ab	1664.1bi		
	÷	Difano	200.70ad	207.47bc	125.57af	413.7ab	502.4a	271.5ab	3058bc	2430ab	1292.1ei		
)		Organza	193.97ad	220.97bc	124.47af	230.1ab	147.2a	309.2ab	3669bc	1934ab	1159.7fi		
	Fu 2	Calbrese	193.97ad	275.10ab	216.40a	479ab	265.6a	159b	2631bc	1865ab	1013.1gi		
	÷	Difano	187.23ad	180.47bc	121.07cf	413.7ab	265.6a	111.6b	3704bc	3191ab	1185.2fi		
		Organza	214.23ac	200.70bc	173.07af	129.4ab	99.8a	69.4b	4833ac	2712ab	1946bi		
Se	Fu	Calbrese	187.23ad	186.73bc	173.67af	490.7ab	129.4a	212.3b	2216bc	1728ab	1660.1bi		
a.l	÷	Difano	166.93be	193.97bc	187.20ad	348.5ab	93.9a	129.4b	2058c	2832ab	3080.2ac		
¹		Organza	207.47ad	173.70bc	82g	117.6b	265.6a	347.2ab	4243ac	2524ab	2570.7ag		

Intl J Farm & Alli Sci. Vol., 5 (2): 126-167, 2016

	1 Fu	Calbrese	207.47ad	214.27bc	103.80ef	546.9ab	206.4a	165b	2802bc	2926ab	766.3hi
	Ξ	Difano	200.70ad	180.47bc	96.57fg	478.9ab	135.3a	99.8b	2058c	4003ab	599.6i
		Organza	200.73ad	204.33bc	103.80eg	301.2ab	407.8a	85.1b	4717ac	1173ab	1527.2ci
	Fu 2	Calbrese	187.23ad	207.47bc	100.17eg	259.7ab	141.3a	135.3b	5564ac	2550ab	1126.8fi
	Ŧ	Difano	193.97ad	193.97bc	107.40eg	129.4ab	301.2a	360.2ab	2870bc	2088ab	2540.7ag
		Organza	248.03a	187.23bc	164.30af	502.5ab	206.4a	378ab	3567bc	1173ab	1365.5di
Se	Fu-H 0	Calbrese	217.63ab	207.47bc	180.43ae	348.5ab	271.6a	464.8ab	3847ac	2242ab	2117.2bi
<u> </u>		Difano	221ab	194bc	193.97ac	437.4ab	164.9a	64.3b	4983ac	2327ab	1522.8ci
5 (Organza	207.47ad	187.17bc	214.23a	721.7ab	170.9a	75.3b	4576ac	1297ab	1741.1bi
тg	Fu 1	Calbrese	133.10de	186.90bc	193.97ac	478.5ab	182.7a	88b	4871ac	2701ab	2689.8af
<u> </u>	÷	Difano	146.63be	173.70bc	193.97ac	770.6ab	241.9a	188.7b	2562bc	2725ab	3075.5ac
\smile		Organza	160.17be	214.23bc	193.97ac	301.2ab	182.7a	662.5a	3499bc	984b	3203.6ab
	P 2	Calbrese	112.80e	220.97bc	200.70ac	1210.8a	413.7a	170.9b	4760ac	1612ab	3909.3a
	÷	Difano	139.9ce	187.23bc	207.47ab	429.8ab	307.1a	271.4b	3593bc	3995ab	2913ae
		Organza	162.9be	173.67bc	200.73ab	93.7b	224.2a	460.8ab	4786ac	2827ab	2978.4ad
(*): F	igures of	unshared cha	aracteristics a	re significant a	at 0.05 level D	uncan test.					

Table (32). Mineral accumulations responses of cultivars to Se and F-H triple interactions (*)											
Se/Fi	u-H/ Cvs		Se/curd	Se/leaf	Se/root	N/curd	N/leaf	N/root	K/curd	k/leaf	K/root
Se	Fu (0)	Calbrese	0.00	0.00	0.00	4.17a	2.74bf	3.57a	29.03bd	27.47a	24.36cd
ö	÷	Difano	0.00	0.00	0.00	2.06ab	4.44ac	4.08a	24.67bd	26.22a	36.51a
(m		Organza	0.00	0.00	0.00	2.86ab	4.67ab	4.31a	25.60bd	26.85a	24.05cd
g.I	Fu-H	Calbrese	0.00	0.00	0.00	2.60ab	3.63af	2.54a	45.24ab	33.71a	33.08ac
1)		Difano	0.00	0.00	0.00	2.41ab	4.85a	2.49a	30.90bd	25.60a	32.15ac
		Organza	0.00	0.00	0.00	2.04ab	1.62f	2.18a	44.62ab	23.42a	33.40ac
	Fu 2	Calbrese	0.00	0.00	0.00	3.15ab	2.30df	3.13a	39.63ac	31.53a	33.08ac
	÷	Difano	0.00	0.00	0.00	3.01ab	3.29af	2.46a	15.32d	28.41a	22.80cd
		Organza	1.66ce	1.05de	1.46de	2.62ab	2.80bf	2.71a	39.01ad	23.73a	32.46ac
Se	Fu	Calbrese	2.88ae	4.15ae	6.35ac	1.67b	3.11af	2.33a	40.88ac	36.82a	28.72ad
Ö	÷	Difano	5.53ac	5.47ad	4.79ad	2.81ab	2.48cf	2.47a	57.39a	34.95a	35.89ab
5 (0	Organza	5.24ac	2.87be	6.68ac	3.81ab	2.31df	2.79a	32.15bd	24.98a	31.84ad
рm	1 1	Calbrese	5.38ac	6.47ac	6.03ac	2.64ab	1.98ef	2.61a	40.56ac	25.92a	24.67bd
<u> </u>	÷	Difano	3.62ae	5.91ad	6.30ac	2.10ab	2.73bf	2.67a	26.23bd	31.84a	29.03ad
\smile		Organza	2.64ae	6.80ac	4.85ad	2.65ab	2.61cf	2.75a	26.85bd	33.40a	36.20a
	Fu 2	Calbrese	4.99ac	5.45ad	7.68a	2.52ab	3.03af	3.19a	24.05bd	30.28a	31.21ad
	÷	Difano	5.59ac	2.06ce	4.32ae	2.55ab	2.71bf	2.55a	23.42bd	33.40a	31.53ad
		Organza	5.47ac	6.38ac	5.24ad	3.64ab	2.37df	2.45a	29.34bd	30.90a	27.79ad
Se	Fu 0	Calbrese	3.52ae	8.69a	5.88ad	4.13a	2.87bf	2.46a	23.73bd	26.85a	27.16ad
-	÷	Difano	6.70a	4.09ae	4.14ae	1.97ab	2.90af	3.80a	19.99cd	25.92a	29.66ad
(m		Organza	2.79ae	4.22ae	4.88ad	2.57ab	2.88bf	3.13a	40.56ac	24.98a	35.89ab
g.l-	_ <u>−</u> E	Calbrese	5.66ac	5.41ad	4.49ad	2.03ab	2.47cf	3.45a	22.18bd	29.97a	28.41ad
	÷	Difano	4.52ad	2.73be	3.83ae	3.88ab	2.33df	2.63a	39.32ad	23.42a	32.15ac
		Organza	0.53de	7.27ac	4.67ad	3.01ab	2.94af	2.83a	36.82ad	24.98a	25.92ad
	Pu 2	Calbrese	2.86ae	2.34be	3.84ae	1.88b	2.11ef	2.47a	26.85bd	29.66a	33.08ac
	÷	Difano	4.33ad	3.14be	5.73ad	1.84b	2.43cf	3.07a	25.92bd	24.98a	20.62d
		Organza	2.78ae	7.30ab	4.31ae	1.72b	2.14ef	3.29a	33.40bd	25.29a	27.47ad
Se	Fu	Calbrese	1.76ce	4.76ae	3.90ae	2.88ab	2.14ef	2.61a	16.88cd	25.60a	36.82a
<u> </u>	÷	Difano	5.84ab	6.15ad	7.53ab	1.98ab	2.83bf	2.58a	27.47bd	29.97a	26.85ad
5 (0	Organza	3.92ae	5.15ae	2.82ce	2.39ab	3.64af	2.39a	32.15bd	25.60a	23.42cd
mg	Fu 1	Calbrese	2.41be	2.45be	3.11be	2.43ab	3.79ae	2.61a	19.37cd	24.67a	24.05cd
<u>.</u>	Ŧ	Difano	3.46ae	4.70ae	7.38ab	2.20ab	2.17ef	2.51a	34.64ad	23.11a	26.85ad
\smile		Organza	2.97ae	7.06ac	3.93ae	3.77ab	2.50cf	2.97a	22.49bd	27.16a	25.60ad
	NTU	Calbrese	2.71ae	3.17be	3.96ae	2.07ab	2.79bf	2.36a	29.34bd	28.10a	24.36cd
	Ť	Difano	3.06ae	3.49be	4.49ad	2.23ab	2.25ef	2.43a	25.29bd	34.64a	29.03ad
	-	Organza	4.76ac	4.61ae	4.70ad	2.33ab	4.30ad	2.84a	21.86bd	22.80a	28.41ad
(*): F	igures of u	unshared cha	racteristics are	e significant a	at 0.05 level D	ouncan test.					

Conclusions

The experiment results expressed in the following conclusion items:

The most effective rate of Selenium was 1mg.l⁻¹. However, the optimum Selenium rate for agricultural food enrichments depends upon many factors; mainly Se enriched cultivar and/or species, Selenium status of soil and sulfur levels in soils.

The applied Selenium rates substantially promoted plant growth, stomata dimensions, optimal hormonal homeostasis, and nutrient partitioning within curds, leaves, and roots.

Fulvic-humic acids was very effective in recruiting the positive effects of Selenium, particularly 1ml.l⁻¹treatment. This treatment manifested optimal growth, stomata dimensions, optimal hormonal homeostasis, and nutrient partitioning within curds, leaves, and roots.

The highest responses to Selenium and fulvic-humic acids confined to Calbrese broccoli cultivar followed by Difano cauliflower cultivar. However, Organza f1 exhibited the lowest responses.

Curd content of selenium ranged between 0.512 to 6.96 µg.g⁻¹ this range categorized with in the safe food enriched with Selenium, which in some references went up to 22.76 µg.g⁻¹.

Drip-hydroponic system is very potent in Se enrichment program where reducing nutrient loss and soil mineral interaction avoidance are apparent.

Studies should be conducted on Dohuk calcareous soils.

Using different water qualities should be included with Selenium studies

Varying Selenium rates less than 0.5 g.l⁻¹ might be of significance.

Further studies on other cultivars and species are required.

REFERENCES

Abdel C. G. (2009). Stomata behavior of three irrigated and non-irrigated onion (*Alium cepa* L.), cultivars grown on polyethylene mulched soil. J. Dohuk Univ. Agric & Vet, 2009 Vol.12, 2:1-11.

Abdel C. G. (2009a) Evaluating the productivity of five cucumber Cucumis sativus L.) Cultivars and their responses to varying rates of Gibberellic acid (GA₃). J. Dohuk Univ. Agric. & Vet.12, 1:1-10.

- Abdel, C. G. (2006). Improving yield and yield quality of four faba bean cultivars grown under rainfalls: Application of some nutrients. Mesopotamia J. Agric 34, 4: 21-30.
- Al-Hamadany, S. Y. H. (2005). The effect of supplemental irrigation and abscisic acid (ABA) on growth and yield of some faba bean (*Vicia faba* L.) cultivars. A Ph.D Thesis Horticulture Dept. Agriculture and Forestry College, Mosul University, Mosul, Iraq.

Amweg E. L., D. L. Stuart and D. P. Weston (2003). Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water. Aquatic Toxicology 63, 13-25.

AOAC (1980). Offcial Method of Analysis 11th edition Washington D.C.

Arancon N. Q., C. A. Edwards, S. Lee and R. Byrne (2006). Effects of humic acids from vermicomposts on plant growth. Eur. J. Soil Biol. 46, 65-69.

Arnault I. and J. Auger (2006). Seleno-compounds in garlic and onion. J. Chromatogr. A, 1112: 23–30.

Bama K. S., G. Selvakumari, R. Santhi and P. Singaram (2003). Effect of humic acid on nutrient release pattern in an Alfisol (Typic Haplustalf). Madras Agric. J. 90, 10-12: 665-670.

Blunden G., T. Jenkins and Y. W. Liu (1996). Enhanced chlorophyll levels in plants treated with seaweed extract. J. Appl. Phycol 8, 535-543.

Bowler C., M. Van Montagu and D. Inze. (1992). Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol., 43: 83– 116.

Brown T. A. and A. Shrift (1982). Selenium: toxicity and tolerance in higher plants. Biol Rev 57: 59-84

Cai X. J., E. Block, P. C. Uden, X. Zhang, B. D. Quimby and J. J. Sullivan (1995). Allium chemistry - identification of selenoamino acids in ordinary and selenium-enriched garlic, onion, and broccoli using gas-chromatography with atomic-emission detection. J Agric Food Chem 43: 1754-1757.

Calace N., C. Cremisini, M. Galletti, S. Mirante and B. M. Petronio (2005). Copper and other trace elements strongly bound to humic acids along sediment cores in the Ross Sea, Antarctica. J. Environ. Monit., 7:1281-1286.

Cary, E. E. and W. H. Allaway (1973). Selenium content of field crops grown on selenitetreated soils. Agron. J. 65:922-924.

Cegarra, J., Vazquez, A., Costa, F., Lax, A. and Morgan, E. (1987). Changes undergoes by some characteristics of organic wastes during the composting process. In: compost: production quality and use. M.Bertoldi, M.P.Ferranti, P.L.Hermite and F.Zuccoli (eds.), Elsevier, London, pp.776-780.

Chameides W. L. and D. D. Davis (1980). Iodine: its role in tropospheric photochemistry. J Geophys Res.,/85:/7383-7398.

Chaoui A. and E. El Ferjani (2005). Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (*Pisum sativum* L.) seedlings. C.R. Biologies, 328: 23–31.

Chorover J., M. K. Amistadi, W. D. Burgos and P. G. Hatcher (1999). Quinoline sorption on kaolinite-umic acid complexes. Soil Sci. Soc. Am. J. 63:850-857.

Cooke T. D. and K. W. Bruland (1987). Aquatic chemistry of selenium: evidence of biomethylation. Environ Sci Technol., /21: 1214-1219.

- David P. P., N. Nelson and D. C. Sanders (1994). Humic acid improves growth of tomato seedling in solution culture. J. Pl. Nutr.17: 173-184.
- Davis C. D., H. W. Zeng and J. W. Finley (2002). Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice. J Nutr 132: 307-309.

Deepa M. (2001). Effect of lignite humic acid on soil microorganisms. M.Sc.(Ag.) Thesis, TNAU, Coimbatore.

Devoto A. and J. G. Turner (2005). Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123: 161-172.

Draize J. H. and O. A. Beath (1935). Observations on the pathology of "blind staggers" and "alkali disease". Am Vet Med Assoc J 86: 753-763.

- Duffield-Lillico A. J., B. L. Dalkin, M. E. Reid, B. W. Turnbull, E. H. Slate, E. T. Jacobs, J. R. Marshall and L. C. Clark (2003). Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the nutritional prevention of cancer trial. BJU International 91, 608-612.
- Dumont E., F. Vanhaecke and R. Cornelis (2006). Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385: 1304-1323

Dusberg, J. M., M. S. Smith and J. W. Doran (1989). In: Dynamics of SOM in tropical ecosystems University of Hawaii, Hawaii, USA.

Ellis D. R. and D. E. Salt (2003). Plants, selenium and human health. Curr Opin Plant Biol 6: 273-279.

Erigun, N.; Ş. F. Topcuoğlu and A. Yildiz. (2002). Auxin (Indole-3-acetic acid), Gibberellic (GA₃), Abscisic Acid (ABA) and Cytokinie (Zeatin) production by some species of Mosses and Lichens. Turk. J. Bot. 26: 13-18.

- Eustice D. C., I. Foster, F. J. Kull and A. Shrift (1981). Selenium toxicity: aminoacylation and peptide bond formation with selenomethionine. Plant Physiol., 67: 1054–1058.
- Ferrara G., A. Pacifico, P. Simone and E. Ferrara (2007). Preliminary study on the effects of foliar applications of humic acids on 'Italia' table grape. Proc. of the XXXth World Congress of Vine and Wine.
- Figueroa R. A., A. Leonard and A. A. MacKay (2004). Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol. 38:476-483.
- Figueroa R. A., and A. A. MacKay (2005). Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ. Sci. Technol. 39:6664-6671.
- Finley J. W. (2003). Reduction of cancer risk by consumption of selenium enriched plants: Enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. J Med Food 6: 19-26.
- Finley J. W. and C. D. Davis (2001). Selenium (Se) from high-selenium broccoli is utilized differently than selenite, selenate and selenomethionine, but is more effective in inhibiting colon carcinogenesis. Biofactors 14: 191-196.
- Finley J. W., C. D. Davis and Y. Feng (2000). Selenium from high selenium broccoli protects rats from colon cancer. J Nutr 130: 2384-2389.
- Finley J. W., C. Ip, D. J. Lisk, C. D. Davis, K. J. Hintze and P. D. Whanger (2001). Cancer-protective properties of high-selenium broccoli. J Agric Food Chem 49: 2679-2683.
- Fokin A. D. and M. K. Sinha (1969). Interaction of phosphate with soil humic substances. Izveston Timiryazey Acad. Agric. Sci. 4.
- Franks, P. J., T. N. Buckely J. C. Shope and K. A. Mott (2001). Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiol, April Vol. 125, pp. 1577-1584.
- Ganther H. E. (1999). Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20: 1657-1666.
- Goldschmidt V. M. (1954). Geochemistry. Oxford: Clarendon Press; 1954.
- Govindasamy R., S. Chandrasekaran and K. Natarajan (1989). Influence of (lignite) humic acid on ammonia volatilization from urea. In: Proc. National seminar on "Humus acids in agriculture". Annamalai University, Tamil Nadu.
- Gu B., J. Schmitt, Z. Chen, L. Liang, and J. F. McCarthy (1994). Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environ. Sci. Technol. 28:38-46.
- Gu B., J. Schmitt, Z. Chen, L. Liang, and J. F. McCarthy (1995). Adsorption and desorption of diff erent organic matter fractions on iron oxide. Geochim. Cosmochim. Acta 59:219-229.
- Gu C. and K. G. Karthikeyan (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 39:9166-9173.
- Gu C., and K. G. Karthikeyan (2005a). Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol. 39:2660-2667.
- Gu C., K. G. Karthikeyan, S. D. Sibley and J. A. Pedersen (2007). Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494-1501.
- Hajiboland R. and L. Amjad (2007). Does antioxidant capacity of leaves play a role in growth response to selenium at different sulfur nutritional status?. PLANT SOIL ENVIRON., 53, 5: 207–215.
- Hamscher G., S. Sczesny, H. Hoper, and H. Nau (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by highperformance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem. 74:1509-1518.
- Hartikainen H. and T. Xue (1999). The promotive effect of selenium on plant growth as triggered by ultraviolet radiation. Journal of Environmental Quality 28:1372–1375.
- Hartikainen H., T. Xue and V. Piironen (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil, 225: 193–200.
- Hedges J. I. (1988). In Polymerization of Humic Substances in Natural Environments. Humic Substances and their Role in the Environment,ed. F. H. Frimmel and R. F. Christman, John Wiley & Sons, New York, 1988, pp. 45–58.
- Hedges J. I. (1992). Mar. Chem., 39: 67.
- Ip C. and D. J. Lisk (1994). Enrichment of selenium in allium vegetables for cancer prevention. Carcinogenesis. 1994;15:1881-1885.
- Ip C., C. Hayes, R. M. Budnick and H. E. Ganther (1991). Chemical form of selenium, critical metabolites, and cancer prevention. Cancer Res 51:595-600.
- Ip C., H. J. Thompson, Z. J. Zhu and H. F. Ganther (2000). In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60:2882-2886.
- Karthikeyan K. G. and M. Meyer (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 361:196-207.
- Katkat A.V., H. Celik, M. A. Turan and B. B. Asik (2009). Effects of soil and foliar applications of humic substances on dry weight and mineral nutrients uptake of wheat under calcareous soil conditions. Austr. J. Basic Appl. Sci. 3, 2: 1266-1273.
- Kaya M., M. Atak, K. M. Khawar, C. Y. Ciftci and S. Ozcan (2005). Effect of pre-sowing seed treatment with zink and foliar spray humic acids on field of common bean (*Pheasolus vulgaris* L.). Int. J. Agric. Biol. 7: 875-878.
- Keck A. S. and J. W. Finley (2006). Aqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinine reductase in Hepa 1c1c7 cells. Food Chem. Toxicol., 44: 695–703.
- Khan S., M. A. Qureshi, J. Singh and G. Praveen (1997). Influence of Ni(ii) and Cr (iii), Humic acid (HA) complexes on major nutrients (NPK) status of the soil. Indian J. Agric. Chem. 31: 1-5.
- Koivistoinen P. and J. K. Huttunen (1986). Selenium in food and nutrition in Finland: an overview of research and action. Ann. Clin. Res. 18:13-17.
- Kolpin D. W., E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaygg, L. B. Barber and H.T. Buxton (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 36:1202-1211. Krauskopf K. B. (1982). Introduction to geochemistry, 2nd. edn. Singapore: McGraw-Hill Book Company, Appendix 3, p. 546.
- Kretzschmar R., D. Hesterberg and H. Sticher (1997). Eff ects of adsorbed humic acid on surface charge and fl occulation of kaolinite. Soil Sci. Soc. Am. J. 61:101-108.
- Kryukov G. V., S. Castellano, S. V. Novoselov, A. V. Lobanov, O. Zehtab, R. Guigo and V. N. Gladyshev (2003) Characterization of mammalian selenoproteomes. Science 300: 1439-1443.
- Lax A. (1991). Cation exchange capacity induced in calcareous soils by fertilization with manure. Soil Sci. 15: 174-178.
- Li H., G. Y. Sheng, B. J. Teppen, C. T. Johnston and S. A. Boyd (2003). Sorption and desorption of pesticides by clay minerals and humic acidclay complexes. Soil Sci. Soc. Am. J. 67:122-131.
- Lindsey M. E., M. Meyer and E. M. Thurman (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in ground water and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem. 73:4640-4646.

- Lyi M. S., L. I. Heller, M. Rutzke, R. M. Welch, L. V. Kochian and L. Li (2005). Molecular and Biochemical Characterization of the Selenocysteine Se-Methyltransferase Gene and Se-Methylselenocysteine Synthesis in Broccoli. Plant Physiology, May 2005, Vol. 138, pp. 409-420.
- Lyons G., I. Oritz-Monasterio, J. Stangoulis, R. Graham (2005a). Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant and Soil., 269:/369-380.
- MacKay A. A. and B. Canterbury (2005). Oxytetracycline sorption to organic matter by metal-bridging. J. Environ. Qual. 34:1964-1971.
- Marschner H. (1995). Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, London.

Matysiak K., S. Kaczmarek, R. Krawczyk (2011). Influence of seaweed extracts and mixture of humic and fulvic acids on germination and growth of *Zea mays* L. Acta Sci. Pol., Agricultura 10,1: 33-45.

McKnight D. M. and G. R. Aiken (1998). In Sources and Age of Aquatic Humus Aquatic Humic Substances: Ecology and Biogeochemistry,ed. D. O. Hessen and L. J. Tranvik, Springer-Verlag, Berlin, pp. 9–39.

- McKnight D. M., K. E. Bencala, G. W. Zellweger, G. R. Alken, G. L. Feder and K. A. Thorn (1992). Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado. Environ. Sci. Technol. 26:1388-1396.
- Neuhierl B. and A. Bock (1996). On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of *Astragalus bisculatus*. Eur J Biochem 239: 235-238.
- Neuhierl B., M. Thanbichler, F. Lottspeich and A. Bock (1999). A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407-5414.
- Pal S. and M. B. Sengupta (1985). Nature and properties of humic acid prepared from different sources and its effect on nutrient availability. Pl. Soil, 88: 71-91. pp.319-325.
- Palmer J. D. and L. A. Herbon (1988). Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28: 87-97.

Patrick L. (2004). Selenium biochemistry and cancer: a review of the literature. Alternative Medicine Review 9, 239-258

Peters U., C. B. Foster, N. Chatterjee, A. Schatzkin, D. Reding, G. L. Andriole, E. D. Crawford, S. Sturup, S. J. Chanock and R. B. Hayes (2007). Serum selenium and risk of prostate cancer – a nested case-control study. American Journal of Clinical Nutrition 85, 209-217.

Pioncelot R. P. (1993). The use of a commerical organic biostimulant for bedding plant production J. Sustainable Agriculture 3:99-110. Porubcan L. S., C. J. Serna, J. L. White and S. L. Hem (1978). Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. J.

Pharm. Sci. 67:1081-1087.

- Prasad, A., N. G. Totey, P. K. Khatri and A. K. Bhowmik (1991). Effect of added tree leaves on the composition of humus and availability of nutrients in soil. J. Indian Soc. Soil Sci. 39: 429-434.
- Ranocha P., F. Bourgis, M. J. Ziemak, D. Rhodes, D. A. Gage and A. D. Hanson (2000). Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. J Biol Chem 275: 15962-15968.
- Renaud E. (2010). Food Farmacy Part II: The Case for Broccoli (*Brassica oleracea L.* var. *italica* Plenk). Gardener Customer Service is available 24/7 at 1-888-762-7333.
- Russo R. O. and G. P. Berlyn (1990). The use of organic biostimulants to help low input sustainable agriculture. J. Sustainable Agriculture, 1:19-42.
- Sarir M. S., M. Sharif, A. Zeb and M. Akhlaq (2005). Influence of different levels of humic acid application by various methods on the field and field components of maize. Saharad J. Agric. 21, 1: 75-81.
- Schrauzer G. N. (2000). Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr., 130:1653-1656.
- Schwarz K. and C. M. Foltz (1957). Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 70: 3292-3293.

Seppanenn M., M. Turakainen and H. Hartikainen (2003). Selenium effects on oxidative stress in potato. Plant Sci., 165: 311-319.

- Simojoki A., T. Xue, K. Lukkari, A. Pennanen and H. Hartikainen (2003). Allocation of added selenium in lettuce and its impact on roots. Agr. Food Sci. Finland, *12*: 155–164.
- Simon L., E. Szeles, B. Kovacs, J. Prokisch and Z. Gyori (2006). Phytoextraction of selenium from contaminated soils with Indian mustard, fodder radish and alfalfa. In: Szilágyi M., Szentmihályi K. (eds.). In: Proc. Int. Symp. Trace elements in the food chain, Budapest, Hungary: 40– 44.
- Sinha M. K. (1972). Organo-metallic phosphates. The solvent action of fulvic acids on insoluble phosphates. Pl. Soil, 37: 457-467.
- Sithole B. B. and R. D. Guy (1987b). Models for tetracycline in aquatic environments: II. Interaction with humic substances. Water Air Soil Pollut. 32:315-321.
- Sithole B. B., and R. D. Guy (1987a). Models for tetracycline in aquatic environments: I. Interaction with Bentonite clay systems. Water Air Soil Pollut. 32:303-314.
- Song, K. M., T. C. Osborn, and P. H. Williams (1990). Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs)
 3. Genome relationships in Brassica and related genera and the origin of *B. oleracea* and *B. rapa* (syn. campestris). Theor. Appl. Genet. 76: 497-506.
- Stevenson F. J. (1994). Humus Chemistry, Genesis Composition Reactions, Wiley, New York, 1994.
- Sugihara S., M. Kondo, Y. Chihara, M. Yuji, H. Hattori and M. Yoshida (2004). Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasmamass spectrometry. Biosci Biotechnol Biochem 68:193-199.

Taiz L. and E. Zeiger (2002). Plant Physiology. 3rd ed Hardcover: 690 pages Publisher.ISBN: 0878938230.

Tan K. H. (1978). Effects of humic and fulvic acids on release of fixed potassium. Geoderma, 21: 67-74.

- Tejda M. and J. L. Gonzales (2003). Influence of foliar fertilisation with amino acids and humic acids on productivity and quality of asparagus. Biol. Agric. Hortic. 21: 277-291.
- Thangavelu P. and T. S. Manickam (1989). Studies on the effect of organic manure on fixation and release pattern of phosphorus and zinc under different moisture regimes. In: Proc. National seminar on "Humus acids in agriculture", Annamalai University, Tamil Nadu.
- Thormann C. E., M. E. Ferreira, L. E. A. Camargo, J. G. Tivang and T. C. Osborn (1994). Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor. Appl. Genet. 88: 973-980.
- Tian M. S., C. G. Downs, R. E. Lill and G. A. King (1994). A role for ethylene in the yellowing of broccoli after harvest. J Am Soc Hort Sci 119: 276-281.
- Tinggi U. (2003). Essentiality and toxicity of selenium and its status in Australia: a review. Toxicology Letters 137, 103-110.

Tolls J. (2001). Sorption of veterinary pharmaceuticals in soils: A review. Environ. Sci. Technol. 35:3397-3406.

U, N. (1935). Genome analysis in Brassica with special reference to the experimental formation of *B. napus* and peculiar mode of fertilization. Jpn. J. Bot. 7: 389-452.

Vaughan D. and B. G. Ord (1985). Soil organic matter-a perspective on its nature, extraction, turn over and role in soil fertility. Soil organic matter and biological activity, pp.4-18. Junk Publishers, Werter land.

Wang K. and B. Xing (2005). Structure and sorption characteristics of adsorbed humic acid on clay minerals. J. Environ. Qual. 34:342-349.

Warwick S.I. and L. D. Black (1991). Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae)- Chloroplast genome and cytodeme congruence. Theor. Appl. Genet. 82: 81-92.

Washington D. C. (1980) National Research Council, Mineral Tolerance of Domestic Animals, National Academy of Sciences, Washington, DC, (1980). pp. 256-276, 392-420. In H. F. Mayland, L. J. J. D0yle and R. P. Si-Iarma (1986). Biological Trace Element Research 65 Vol. 10, 65-75.

Watkinson, J. H. (1983). Prevention of selenium deficiency in grazing animals by annual top-dressing of pasture with sodium selenate. N. Z. Vet. J. 31:78-85.

West, P. W.; Ramakrishna, T. V.; A Catalytic (1968). Method for Determining Traces of Selenium. Selenium Determination, Page 1 KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY (VERSION 1.8) Anal. Chem. 40, 966-968.

Whanger P. D. (1989). Selenocompounds in plants and their effect on animals. In: Cheeke PR, editor. Toxicants of plant origin. Vol III. Proteins and amino acids. Boca Raton, FL: CRC Press, p. 141-167.

Whanger P. D. (2002). Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21: 223-232.

Whanger P. D. (2004). Se and its relationship to cancer: an update. Br J Nutr., 91:11-28.

White P. J., H. C. Bowen, P. Parmaguru, M. Fritz, W. P. Spracklen, R. E. Spiby, M. C. Meacham, A. Mead and M. Harrimanm *et al.* (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot., 55:1927-37.

Wien, H. C. (1997). The Physiology of Vegetable Crops. CAB international.

Woodward, F. I., J. A. Lake and W. P. Quick (2002). Stomatal development and CO2: ecological consequences. New Phytol. 153: 477-484.

Xu X. (1986). The effect of foliar application of fulvic acid on water use, nutrient uptake and field in wheat. Aust. J. Agr. Res 37: 343-350.

Xue T. and H. Hartikainen (2000). Association of antioxidative enzymes with the synergistic effect of selenium *Corresponding author:* Hajiboland Dr. R., University of Tabriz, Plant Science Department, 51666 Tabriz, Iran Food Sci. Finland, *9*: 177–186.

Xue T., H. Hartikainen and V. Piironen (2001). Antioxidative and growth promoting effect of selenium in senescing lettuce. Plant Soil 237:55-61. Yamamoto S. and R. Ishiwatary (1992). Sci. Total Environ., 1992,117,118: 279.

Yigit F. and M. Dikilitas (2008). Effect of humic acid applications on the root-rot diseases caused by *Fusarium spp.* on tomato plants. Plant Pathology 7, 2:179-182.

Yoon T. H., S. B. Johnson and G. E. Brown (2005). Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution. Langmuir 21:5002-5012.

Cassman KG, Dobermann A, Walters DT and Yang H. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Ann. Rev. Environ. Resour. 28: 315-358.

Charles AS and Charles SW. 2006. Corn response to Nitrogen rate, row spacing, and plant density in Eastern Nebraska. Agron J. 94: 529-535. Cox WJ and Cherney DJR. 2001. Row spacing, plant density, and nitrogen effects on corn silage. Agron J. 93: 597-602.

De Pascal S, Tamburrino R, Maggio A, Barbieri G, Fogliano V and Pernice R. 2006. Effect of nitrogen fertilization on the nutritional value of organicallay and conventionally grown tomatoes. Proceeding of the international symposium towards ecologically sound fertilization strategies for field vegetable production. 700:107-110.

Emami A. 1975. Plant analysis methods. 1: 11-28.

Farahmand AR, H Fardad, A Liaghat and A Khashi. 2006. The effect of water and nitrogen amount on quantity and quality of tomato under deficit irrigation. Irrigation J. Agri. Sci. 37: 273-279.

Gehl RJ, Maddux LD and Gordon WB. 2005. Corn yield response to nitrogen rate and timing in sandy irrigated soils. Agron J. 97: 1230-1238.

Hatfield JL and Prueger JH. 2004. Nitrogen over-use, under-use, and efficiency. Crop Sci.

Lack Sh, Naderi A, Siadat SA, Ayenehband A and N Nour-Mohammadi. 2005. Effects of water deficiency stress on yield and nitrogen efficiency of grain corn hybrid SC. 704 at different nitrogen rates and plant population. J. aric.sci. Natur. Resour. 14 (2): 1-14.

Lopez- Bellido RJ and L Lopez- Bellido. 2001. Efficiency of nitrogen in wheat under Mediterranean condition: effect of tillage, crop rotation and N fertilization. Field Crops Res. 71: 31-46.

Moll RH, EJ Kamprath and WA Jackson. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J. 74: 562-564.

Oikeh SO, Kling JG and Okoruwa AE. 1998. Nitrogen fertilizer management effects on maize grain quality in the West African moist savanna. Crop Sci. 38: 1056-1061.

- Sepehr E, Malakouti MJ and Nougolipour F. 2008. Evaluation of phosphorus efficiency in Iranian cereal in a deficient calcareous soil. Euro soil 2008 International conference (Soil- Society-Environment). Book of abstracts: Pp. 182. In: W. E. H. for daily light partitioning in multispeciec canopies. Agricultural forest and meteorology. 101:252-263.
- Townsend AR, Howarth R, Bazzaz FA, Booth MS, Cleveland CC, Colling SK, Doboson AP, Epstein PR, Holland EA, Keeney DR, Mallin MA, Rogers CA, Wayne P and Wolfe AH. 2003. Human health effects of a changing global nitrogen cycle. Frontiers Ecology and Environment. 1: 240-246.

Villar-Mir JM, Villar-Miir P, Stockle CO, Ferrer F and Aran M. 2002. On-farm monitoring of soil nitrate-nitrogen in irrigated cornfields in the Ebro valley (Northeast Spain). Agron J. 94: 373-380.