Effects of silver nanoparticle exposure on germination of Lentil (*Lens culinaris* Medik.)

Seyed Saeid Hojjat¹ and Hamidreza Hojjat²

¹. Herbaceous Sciences Research Center of Ferdowsi University of Mashhad, Mashhad, Iran
². The Biotechnology Department at the University of Kashan, Kashan, Iran

Corresponding author: Seyed Saeid Hojjat

ABSTRACT: An investigation carried to examine the effects of Silver Nanoparticle on germination parameters of lentil seeds such as germination index, root long, shoot long, fresh mass and dry mass under control condition. The study was carried out in a randomized block design with three replications. Five levels of silver nanoparticles (0, 10, 20, 30 and 40 µg mL⁻¹) were used. Germination percentage did not affect significantly amongst the various treatments. Lentil seedling under Silver Nanoparticle recorded significantly higher root length, shoot length, Dry Mass and speed of germination over control. Mean germination time was also recorded significantly lower under nano particles treatment than control. The results showed that the effect of AgNPs was significant on germination percentage in P ≤ 0.05. The results of this experiment showed that the use of AgNPs increased the germination in lentil.

Keywords: Nanotechnology, silver, lentil, Seed germination

INTRODUCTION

Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. Nanoparticles (Nano Scale Particles = NSPs) are atomic or molecular aggregates with at least one dimension between 1 and 100 nm (Ball, 2002 & Roco, 2003), that can drastically modify their physico-chemical properties compared to the bulk material (Nel et al, 2006). The majority of the reported studies point to the positive impacts of nanoparticles on plant growth with a few isolated studies pertaining to negative effect. In order to understand the possible benefits of applying nanotechnology to agriculture, the first step should be to analyse penetration and transport of nanoparticles in plants. Numerous studies have demonstrated that TiO₂ nanoparticles promoted photosynthesis and nitrogen metabolism and thus greatly improved growth of spinach at a concentration as low as 20 mg/l (Hong et al., 2005., Hong et al., 2005 & Liu, 2005). Silver nanoparticles (AgNPs) are currently one of the most widely commercially used nanomaterial's (Chen et al., 2008). Silver ions such as AgNPs have been recognized to inhibit ethylene action (Monica et al., 2009). This effect of silver ions on ethylene was reported by several researchers (Beyer, 1976). Silver eliminates unwanted microorganisms in farmer soils and hydroponics systems. It is being used as foliar spray to prevent fungi, rot, moulds and several other plant diseases. Moreover, silver is a great plant-growth stimulator, including silver salt, silicate and water soluble polymer to radioactive rays (Sharon et al., 2010). Another study by Hojjat et al. (2015) studied the effect of AgNPs on the growth of plant seedlings of Fenugreek (*Trigonella foenum-graecum*) seed and Mahajan et al. (2008) studied the effect of nano-ZnO particles on the growth of plant seedlings of mung (*Vigna radiata*) and gum (*Cicer arietinum*). They found that at certain optimum concentration, the seedlings displayed good growth over control and beyond that retardation in growth was observed. Silver nanoparticles mainly due to physical and chemical properties of that particular show in their use of electronic, optical, biochemical and pharmaceutical and health are frequently used.
Seed germination is an important phenomenon in modern agriculture because it is a thread of life of plants that guarantee its survival. The recent advances in nanotechnology and its use in the field of agriculture are astonishingly increasing; therefore, it is tempting to understand the role of silver nanoparticles (AgNPs) in the germination of seeds. In view of the available literature, the present experiment was designed to investigate the effect of AgNPs on the characteristics of germination of Lentil (*Lens culinaris* Medik.) seed.

Materials and Methods

This study was carried out in a randomized complete block design with three replications in the Biotechnology lab, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad. The AgNPs were obtained from US Research Nanomaterial’s, Inc. Transmission electron microscopy (TEM) images of silver nanoparticles with diameters of 20 nm, shown in Figure 1. Seeds of Lentil (*Lens culinaris* Medik.) were from seed bank of Herbaceous Sciences Research Center, Ferdowsi University of Mashhad. These all were washed with deionized water. Seeds were sterilized in a 5% sodium hypochlorite solution for 10 minutes (USEPA, 1966), rinsed through with deionized water several times. Their germination was conducted on water porous paper support in petri dishes (25 seed per dish) at controlled temperature of 25 ± 1 °C. Silver nanoparticles in different concentration (0, 10, 20, 30 and 40 µg mL⁻¹) were prepared directly in deionized water and dispersed by ultrasonic vibration for one hour. Each concentration was prepared in three replicates. Every other day supply with 15 ml silver nanoparticles per every test plantlets was carried out for 14 days along with control. After 14 days of growth, the shoot and root lengths were long enough to measure using a ruler. The controlled sets for germinations were also carried out at the same time along with treated seeds. Germinated seeds counted daily for 14 days in lab and germination percentage (GP) were calculated in the last day.

Germination Speed Index (GSI)

Conducted concomitantly with the germination test, with daily calculation of the number of seeds that presented protrusion of primary root with length ≥ 2 mm, always at the same time during the trial. The germination speed index was calculated by the sum of the number of seeds germinated each day, divided by the number of days elapsed between the seeding and germination (Maguire, 1962), according to the Maguire formula (1).

\[
GSI = \frac{G_1}{n_1} + \frac{G_2}{n_2} + \cdots + \frac{G_i}{n_i},
\]

where:

\(GSI = \) seedlings' germination speed index;
\(G = \) number of seeds germinated each day;
\(N = \) number of days elapsed from the seeding until the last count.

Fresh and Dry Mass

The fresh mass was quantified through weighing in precision scale, and the dry mass was determined through weighing in a precision scale after permanence of the material in a kiln with air forced circulation, at a temperature
of 70 °C, until constant weight. In the end of experiment, radical and plumule length and fresh weight measured. Plants were placed in oven at 70 °C for 48h and weighted with sensitive scale. Statistical analysis each treatment was conducted with three replicates and the results were presented as mean ± SD (standard deviation). The results were analyzed by one way Anova with used Minitab Version 16.

Results and Discussion

Nanotechnology has emerged as a new discipline, and nanoparticles have become a centre of attraction for researchers because of its unique physico-chemical properties compared to their bulk particles (Monica et al., 2009) and Nanotechnology is considered as one of the possible solutions to problems in food and agriculture. As we know seed germination provides a suitable foundation for plant growth, development and yield. In present investigation, different concentration (0, 10, 20, 30 and 40 µg mL\(^{-1}\)) of AgNPs were prepared in distilled water and used for the treatment in Lentil seeds to study their effect on seed germination and early seedling growth. A significant positive influence on Germination Index, root and shoot elongation was observed for all seeds in compared to those of unexposed control germination (Figs. 2, 3).

Seed germination results indicate that AgNPs at their lower concentrations promoted seed germination and early seedling growth in Lentil, however at higher concentration showed slight adverse effects. The results of this experiment showed that the use of AgNPs nanoparticles can increased the germination in Lentil. Among the treatments, application of 10 µg mL\(^{-1}\) of Nano silver proved best by giving the highest values for percent seed germination, germination mean time, seedling vigour index and seed germination index. In the present experiment application of Nano silver enhanced seed potential by increasing the characteristics of seed germination (Fig. 3).

Root systems were well recognized as they were fully germination in treated experiments in less time as compared to control. The results revealed that the level of seed germination and subsequent growth of those seedlings that germinated were both decreased with increasing concentrations of AgNPs. Exposure of the Lentil seeds to the 20-
nm-diameter AgNPs showed a clear and dose-dependent inhibitory effect on their subsequent germination success and on the growth of those seedlings that did germinate (Fig. 2). AgNPs at all concentrations affected the seedling growth, although this was not statistically significant at 10 µg mL⁻¹ for all parameters measured. The higher concentrations of AgNPs (10 µg mL⁻¹) strongly inhibited both the shoot and root growth (especially as Moisture weight), with a more marked inhibition of the shoot growth than the root growth (Fig. 4).

Figure. 4: Effects Of Silver Nanoparticles on Dry Mass of Lentil (The values are the means of three replicates), (1=0 µg mL⁻¹, 2=10 µg mL⁻¹, 3=20 µg mL⁻¹, 4=30 µg mL⁻¹ and 40 µg mL⁻¹)

Similar trends were also found in the root length (Fig. 3). The root length was reduced by 24 percent with 10 µg mL⁻¹ AgNPs (Table 1), while the Shoot long was reduced by 60 percent (Table 1), compared to the no AgNPs control.

Table. 1: Effect of Silver nanoparticles on seed germination and seedling growth of Lentil values are an average of three replications ± SE.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Root long</th>
<th>Shoot long</th>
<th>Fresh Mass</th>
<th>Dry Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Control (0 µg mL⁻¹)</td>
<td>40.66</td>
<td>30.91</td>
<td>2.29</td>
<td>1.16</td>
</tr>
<tr>
<td>2 10 µg mL⁻¹</td>
<td>50.66</td>
<td>50.2</td>
<td>2.2</td>
<td>1.22</td>
</tr>
<tr>
<td>3 20 µg mL⁻¹</td>
<td>50.08</td>
<td>30.16</td>
<td>1.9</td>
<td>1.24</td>
</tr>
<tr>
<td>4 30 µg mL⁻¹</td>
<td>20.25</td>
<td>20</td>
<td>0.82</td>
<td>0.52</td>
</tr>
<tr>
<td>5 40 µg mL⁻¹</td>
<td>10.66</td>
<td>9.1</td>
<td>0.51</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Root and shoot systems were well recognized as they were fully germination in treated experiments in less time as compared to control. Growth enhancement of Nano silver treated plants may have been due to the major changes of morphological and well developed root system.

Conclusion
In conclusion, these results of the current study reveal that the application of silver nanoparticles significantly enhanced seed germination potential. Application of silver nanoparticles improved percent seed germination, mean germination time, seed germination index, seed vigour index, seedling fresh weight and dry weight. It was found that the accumulation and uptake of nanoparticles was dependent on the exposure concentration (Fig 5.).
Acknowledgments
I gratefully acknowledge Professor Gholam Reza Hashemi tabar and Dr. Mohsen Maleki or providing necessary facilities and also thankful to Mahnaz Kohanghadr for technical assistance.

REFERENCES